中文版 | English
题名

Deep learning from three-dimensional Lithium-ion battery multiphysics model Part II: Convolutional neural network and long short-term memory integration

作者
通讯作者Wang, Yun; Niu, Zhiqiang
发表日期
2024-09-01
DOI
发表期刊
ISSN
2666-5468
卷号17
摘要
Lithium-ion (Li-ion) batteries have emerged as a cornerstone of electric vehicles (EVs), enabling the road transportation towards net zero. The success of electric vehicles largely hinges on the battery performance and safety. It is challenging to test and predict battery performance and safety issues by conventional methods, which are usually time-consuming and expensive, involving significant human and measurement errors. To enable the quick estimation of battery performance and safety, we developed three data-driven machine learning (ML) models, namely a convolutional neural network (CNN), a long short-term memory (LSTM), and a CNN-LSTM to predict battery discharge curves and local maximum temperature (hot spot) under various operating conditions. The developed ML models mitigated data scarcity by employing a three-dimensional multi-physics Li-ion battery model to generate enormous and diverse high-quality data. It was found the CNN-LSTM model outperforms the others and achieved high accuracy of 98.68% to learn discharge curves and battery maximum temperature, owing to the integration of spatial and sequential feature extraction. The battery safety can be improved by comparing the predicted maximum battery temperature against safe temperature threshold. The proposed data development and data-driven ML models are of great potential to provide digital tools for engineering highperformance and safe EVs.
关键词
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Computer Science ; Energy & Fuels
WOS类目
Computer Science, Artificial Intelligence ; Energy & Fuels
WOS记录号
WOS:001286533000001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803311
专题工学院_系统设计与智能制造学院
工学院
作者单位
1.Univ Calif Irvine, Dept Mech & Aerosp Engn, Renewable Energy Resources Lab RERL, Irvine, CA 92697 USA
2.Southern Univ Sci & Technol, Coll Engn, Sch Syst Design & Intelligent Mfg, Shenzhen, Peoples R China
3.Loughborough Univ, Dept Aeronaut & Automot Engn, Loughborough LE11 3TU, England
推荐引用方式
GB/T 7714
Pang, Yiheng,Dong, Anqi,Wang, Yun,et al. Deep learning from three-dimensional Lithium-ion battery multiphysics model Part II: Convolutional neural network and long short-term memory integration[J]. ENERGY AND AI,2024,17.
APA
Pang, Yiheng,Dong, Anqi,Wang, Yun,&Niu, Zhiqiang.(2024).Deep learning from three-dimensional Lithium-ion battery multiphysics model Part II: Convolutional neural network and long short-term memory integration.ENERGY AND AI,17.
MLA
Pang, Yiheng,et al."Deep learning from three-dimensional Lithium-ion battery multiphysics model Part II: Convolutional neural network and long short-term memory integration".ENERGY AND AI 17(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pang, Yiheng]的文章
[Dong, Anqi]的文章
[Wang, Yun]的文章
百度学术
百度学术中相似的文章
[Pang, Yiheng]的文章
[Dong, Anqi]的文章
[Wang, Yun]的文章
必应学术
必应学术中相似的文章
[Pang, Yiheng]的文章
[Dong, Anqi]的文章
[Wang, Yun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。