中文版 | English
题名

A Parallel Acceleration Technique based on Bordered Block Diagonal Matrix Reordering for Exponential Integrator Method

作者
DOI
发表日期
2024-05-13
ISBN
979-8-3503-5204-7
会议录名称
会议日期
10-13 May 2024
会议地点
Xi'an, China
摘要
The exponential integrator (EI) method has proven to be an effective technique to accelerate transient circuit simulation. One core step of EI is the generation of rational Krylov subspace basis by the Arnoldi process, which involves one (exact) LU factorization and many back/forward trian-gular solves. Traditional parallelization techniques for circuit simulation perform well in accelerating the LU factorization part (the symbolic and numerical factorization) but fall short in parallelizing the triangular solution part. In this paper, we propose a parallel Bordered Block Diagonal (BBD) matrix reordering algorithm and a parallelization based on OpenMP and MPI to accelerate triangular solutions involved in the rational Krylov space construction in EI. Parallelization is achieved by solving corresponding part of solution vector of each diagonal matrix block independently. Numerical experiments shows that our method can achieve 3.3x and 1.9x speedup under shared and distributed memory environment respectively.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803324
专题工学院_深港微电子学院
作者单位
1.School of Microelectronics, Southern University of Science and Technology, ShenZhen, China
2.SMiT Group Fuxin Technology Limited, Shenjiu Science and Technology Venture Futian District, ShenZhen
第一作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Hang Zhou,Dongen Yang,Yangfei Lin,et al. A Parallel Acceleration Technique based on Bordered Block Diagonal Matrix Reordering for Exponential Integrator Method[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hang Zhou]的文章
[Dongen Yang]的文章
[Yangfei Lin]的文章
百度学术
百度学术中相似的文章
[Hang Zhou]的文章
[Dongen Yang]的文章
[Yangfei Lin]的文章
必应学术
必应学术中相似的文章
[Hang Zhou]的文章
[Dongen Yang]的文章
[Yangfei Lin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。