中文版 | English
题名

Toward Efficient Co- Design of CNN Quantization and HW Architecture on FPGA Hybrid-Accelerator

作者
DOI
发表日期
2024-05-13
ISBN
979-8-3503-5204-7
会议录名称
会议日期
10-13 May 2024
会议地点
Xi'an, China
摘要
Field programmable gate array (FPGA) has emerged as a promising platform for accelerating convolutional neural networks (CNNs). In this paper, we propose a low-latency CNN hybrid-accelerator system and an efficient design space exploration (DSE) method. Specifically, our targeted FPGA platform consists of different types of accelerators for two advan-tages: high concurrency and full hardware utilization (i.e., look-up tables (LUTs) and digital signal processors (DSPs)). Besides, we adopt a bandwidth-aware analytical model for system latency to consider pipeline stalls and computation cycles simultaneously. Furthermore, for the huge design space encompassing layer-wise CNN quantization and FPGA hybrid-accelerator architecture, we propose a DSE method (named DiMEGA) aimed at enhancing search efficiency, which is a differentiable method embedded by a genetic algorithm. The performance of our CNN hybrid-accelerator system is demonstrated on a PYNQ-Z2 FPGA plat-form. The experimental results show that the system latency can be reduced by 42% ~ 48% without sacrificing accuracy, and the DSE time of DiMEGA is reduced by 23% on ResNet20-CIFAR10, and 63% on ResNet56-CIFAR10, compared with SOTA.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803325
专题南方科技大学
作者单位
Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yiran Zhang,Guiying Li,Bo Yuan. Toward Efficient Co- Design of CNN Quantization and HW Architecture on FPGA Hybrid-Accelerator[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yiran Zhang]的文章
[Guiying Li]的文章
[Bo Yuan]的文章
百度学术
百度学术中相似的文章
[Yiran Zhang]的文章
[Guiying Li]的文章
[Bo Yuan]的文章
必应学术
必应学术中相似的文章
[Yiran Zhang]的文章
[Guiying Li]的文章
[Bo Yuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。