题名 | Toward Efficient Co- Design of CNN Quantization and HW Architecture on FPGA Hybrid-Accelerator |
作者 | |
DOI | |
发表日期 | 2024-05-13
|
ISBN | 979-8-3503-5204-7
|
会议录名称 | |
会议日期 | 10-13 May 2024
|
会议地点 | Xi'an, China
|
摘要 | Field programmable gate array (FPGA) has emerged as a promising platform for accelerating convolutional neural networks (CNNs). In this paper, we propose a low-latency CNN hybrid-accelerator system and an efficient design space exploration (DSE) method. Specifically, our targeted FPGA platform consists of different types of accelerators for two advan-tages: high concurrency and full hardware utilization (i.e., look-up tables (LUTs) and digital signal processors (DSPs)). Besides, we adopt a bandwidth-aware analytical model for system latency to consider pipeline stalls and computation cycles simultaneously. Furthermore, for the huge design space encompassing layer-wise CNN quantization and FPGA hybrid-accelerator architecture, we propose a DSE method (named DiMEGA) aimed at enhancing search efficiency, which is a differentiable method embedded by a genetic algorithm. The performance of our CNN hybrid-accelerator system is demonstrated on a PYNQ-Z2 FPGA plat-form. The experimental results show that the system latency can be reduced by 42% ~ 48% without sacrificing accuracy, and the DSE time of DiMEGA is reduced by 23% on ResNet20-CIFAR10, and 63% on ResNet56-CIFAR10, compared with SOTA. |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803325 |
专题 | 南方科技大学 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yiran Zhang,Guiying Li,Bo Yuan. Toward Efficient Co- Design of CNN Quantization and HW Architecture on FPGA Hybrid-Accelerator[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论