题名 | Last-X-Generation Archiving Strategy for Multi-Objective Evolutionary Algorithms |
作者 | |
DOI | |
发表日期 | 2024-07-05
|
ISBN | 979-8-3503-0837-2
|
会议录名称 | |
会议日期 | 30 June-5 July 2024
|
会议地点 | Yokohama, Japan
|
摘要 | For evolutionary multi-objective optimization algorithms (EMOAs), an external archive can be utilized for saving good solutions found throughout the evolutionary process. Recent studies showed that a solution set selected from an external archive is usually superior to the final population. That is, the incorporation of an external archive improves the performance of EMOAs. However, the computation time for maintaining an external archive is long, especially when the archive size is large. To solve this issue, a simple archiving strategy is to save all solutions generated in the last several generations. In this paper, we examine this archiving strategy for three representative EMOAs on artificial test problems (Minus-DTLZ and WFG) and real-world problems (RE). Our results show that archiving the last several generations clearly improves the performance of EMOAs without severely increasing the computation time. |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803333 |
专题 | 工学院_计算机科学与工程系 南方科技大学 |
作者单位 | 1.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China 2.Southern University of Science and Technology, Shenzhen, China 3.National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Tianye Shu,Yang Nan,Ke Shang,et al. Last-X-Generation Archiving Strategy for Multi-Objective Evolutionary Algorithms[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论