中文版 | English
题名

Last-X-Generation Archiving Strategy for Multi-Objective Evolutionary Algorithms

作者
DOI
发表日期
2024-07-05
ISBN
979-8-3503-0837-2
会议录名称
会议日期
30 June-5 July 2024
会议地点
Yokohama, Japan
摘要
For evolutionary multi-objective optimization algorithms (EMOAs), an external archive can be utilized for saving good solutions found throughout the evolutionary process. Recent studies showed that a solution set selected from an external archive is usually superior to the final population. That is, the incorporation of an external archive improves the performance of EMOAs. However, the computation time for maintaining an external archive is long, especially when the archive size is large. To solve this issue, a simple archiving strategy is to save all solutions generated in the last several generations. In this paper, we examine this archiving strategy for three representative EMOAs on artificial test problems (Minus-DTLZ and WFG) and real-world problems (RE). Our results show that archiving the last several generations clearly improves the performance of EMOAs without severely increasing the computation time.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803333
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
2.Southern University of Science and Technology, Shenzhen, China
3.National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Tianye Shu,Yang Nan,Ke Shang,et al. Last-X-Generation Archiving Strategy for Multi-Objective Evolutionary Algorithms[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tianye Shu]的文章
[Yang Nan]的文章
[Ke Shang]的文章
百度学术
百度学术中相似的文章
[Tianye Shu]的文章
[Yang Nan]的文章
[Ke Shang]的文章
必应学术
必应学术中相似的文章
[Tianye Shu]的文章
[Yang Nan]的文章
[Ke Shang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。