中文版 | English
题名

An Efficient Model-Based Approach on Learning Agile Motor Skills without Reinforcement

作者
DOI
发表日期
2024-05-17
ISBN
979-8-3503-8458-1
会议录名称
会议日期
13-17 May 2024
会议地点
Yokohama, Japan
摘要
Learning-based methods have improved locomotion skills of quadruped robots through deep reinforcement learning. However, the sim-to-real gap and low sample efficiency still limit the skill transfer. To address this issue, we propose an efficient model-based learning framework that combines a world model with a policy network. We train a differentiable world model to predict future states and use it to directly supervise a Variational Autoencoder (VAE)-based policy network to imitate real animal behaviors. This significantly reduces the need for real interaction data and allows for rapid policy updates. We also develop a high-level network to track diverse commands and trajectories. Our simulated results show a tenfold sample efficiency increase compared to reinforcement learning methods such as PPO. In real-world testing, our policy achieves proficient command-following performance with only a two-minute data collection period and generalizes well to new speeds and paths.
学校署名
其他
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803342
专题工学院_电子与电气工程系
作者单位
1.Tencent Robotics X, China
2.Chinese University of Hong Kong
3.Department of Electronic and Electrical Engineering, Shenzhen Key Laboratory of Robotics Perception and Intelligence, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Haojie Shi,Tingguang Li,Qingxu Zhu,et al. An Efficient Model-Based Approach on Learning Agile Motor Skills without Reinforcement[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Haojie Shi]的文章
[Tingguang Li]的文章
[Qingxu Zhu]的文章
百度学术
百度学术中相似的文章
[Haojie Shi]的文章
[Tingguang Li]的文章
[Qingxu Zhu]的文章
必应学术
必应学术中相似的文章
[Haojie Shi]的文章
[Tingguang Li]的文章
[Qingxu Zhu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。