题名 | HHGNN: Heterogeneous Hypergraph Neural Network for Traffic Agents Trajectory Prediction in Grouping Scenarios |
作者 | |
DOI | |
发表日期 | 2024-05-17
|
ISBN | 979-8-3503-8458-1
|
会议录名称 | |
会议日期 | 13-17 May 2024
|
会议地点 | Yokohama, Japan
|
摘要 | In many intelligent transportation systems, predicting the future motion of heterogeneous traffic participants is a fundamental but challenging task due to various factors encompassing the agents’ dynamic states, interactions with neighboring agents and surrounding traffic infrastructures, and their stochastic and multi-modal natural behavior tendencies. However, existing approaches have limitations as they either focus solely on static, pairwise interactions, ignoring interactions of varied granularity, or fail to tackle agents’ heterogeneity. In this paper, instead of focusing solely on pairwise interactions, we propose a Heterogenous Hypergraph Graph Neural Network (HHGNN) based motion prediction model that leverages the nature of hypergraph to encode the groupwise interactions among traffic participants. Moreover, we propose the type-aware two-level hypergraph message passing module (TTHMS) with learnable hyperedge-type embeddings to model the intra-group and inter-group level interactions among heterogeneous traffic agents (e.g., vehicles, pedestrians, and cyclists). Besides, We integrate a scene context fusion layer in TTHMS to incorporate the scene context. Comparison and ablation experiments on the Waymo Open Motion Dataset (WOMD) demonstrate HHGNN’s effectiveness within the motion prediction task. |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803343 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, P.R. China 2.School of Artificial Intelligence, Jilin University, Changchun, P.R. China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Hetian Guo,Yingzhi Peng,Zipei Fan,et al. HHGNN: Heterogeneous Hypergraph Neural Network for Traffic Agents Trajectory Prediction in Grouping Scenarios[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论