中文版 | English
题名

HHGNN: Heterogeneous Hypergraph Neural Network for Traffic Agents Trajectory Prediction in Grouping Scenarios

作者
DOI
发表日期
2024-05-17
ISBN
979-8-3503-8458-1
会议录名称
会议日期
13-17 May 2024
会议地点
Yokohama, Japan
摘要
In many intelligent transportation systems, predicting the future motion of heterogeneous traffic participants is a fundamental but challenging task due to various factors encompassing the agents’ dynamic states, interactions with neighboring agents and surrounding traffic infrastructures, and their stochastic and multi-modal natural behavior tendencies. However, existing approaches have limitations as they either focus solely on static, pairwise interactions, ignoring interactions of varied granularity, or fail to tackle agents’ heterogeneity. In this paper, instead of focusing solely on pairwise interactions, we propose a Heterogenous Hypergraph Graph Neural Network (HHGNN) based motion prediction model that leverages the nature of hypergraph to encode the groupwise interactions among traffic participants. Moreover, we propose the type-aware two-level hypergraph message passing module (TTHMS) with learnable hyperedge-type embeddings to model the intra-group and inter-group level interactions among heterogeneous traffic agents (e.g., vehicles, pedestrians, and cyclists). Besides, We integrate a scene context fusion layer in TTHMS to incorporate the scene context. Comparison and ablation experiments on the Waymo Open Motion Dataset (WOMD) demonstrate HHGNN’s effectiveness within the motion prediction task.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803343
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, P.R. China
2.School of Artificial Intelligence, Jilin University, Changchun, P.R. China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hetian Guo,Yingzhi Peng,Zipei Fan,et al. HHGNN: Heterogeneous Hypergraph Neural Network for Traffic Agents Trajectory Prediction in Grouping Scenarios[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hetian Guo]的文章
[Yingzhi Peng]的文章
[Zipei Fan]的文章
百度学术
百度学术中相似的文章
[Hetian Guo]的文章
[Yingzhi Peng]的文章
[Zipei Fan]的文章
必应学术
必应学术中相似的文章
[Hetian Guo]的文章
[Yingzhi Peng]的文章
[Zipei Fan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。