中文版 | English
题名

Close the Sim2real Gap via Physically-based Structured Light Synthetic Data Simulation

作者
DOI
发表日期
2024-05-17
ISBN
979-8-3503-8458-1
会议录名称
会议日期
13-17 May 2024
会议地点
Yokohama, Japan
摘要
Despite the substantial progress in deep learning, its adoption in industrial robotics projects remains limited, primarily due to challenges in data acquisition and labeling. Previous sim2real approaches using domain randomization require extensive scene and model optimization. To address these issues, we introduce an innovative physically-based structured light simulation system, generating both RGB and physically realistic depth images, surpassing previous dataset generation tools. We create an RGBD dataset tailored for robotic industrial grasping scenarios and evaluate it across various tasks, including object detection, instance segmentation, and embedding sim2real visual perception in industrial robotic grasping. By reducing the sim2real gap and enhancing deep learning training, we facilitate the application of deep learning models in industrial settings. Project details are available at https://baikaixin-public.github.io/structured_light_3D_synthesizer/
学校署名
其他
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803344
专题创新创意设计学院
作者单位
1.Department of Informatics, TAMS (Technical Aspects of Multimodal Systems), Universität Hamburg, Germany
2.Agile Robots AG, Munich, Germany
3.School of Design, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Kaixin Bai,Lei Zhang,Zhaopeng Chen,et al. Close the Sim2real Gap via Physically-based Structured Light Synthetic Data Simulation[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Kaixin Bai]的文章
[Lei Zhang]的文章
[Zhaopeng Chen]的文章
百度学术
百度学术中相似的文章
[Kaixin Bai]的文章
[Lei Zhang]的文章
[Zhaopeng Chen]的文章
必应学术
必应学术中相似的文章
[Kaixin Bai]的文章
[Lei Zhang]的文章
[Zhaopeng Chen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。