中文版 | English
题名

MMA-Net: Multiple Morphology-Aware Network for Automated Cobb Angle Measurement

作者
DOI
发表日期
2024-05-17
ISBN
979-8-3503-8458-1
会议录名称
会议日期
13-17 May 2024
会议地点
Yokohama, Japan
摘要
Scoliosis diagnosis and assessment depend largely on the measurement of the Cobb angle in spine X-ray images. With the emergence of deep learning techniques that employ landmark detection, tilt prediction, and spine segmentation, automated Cobb angle measurement has become increasingly popular. However, these methods encounter difficulties such as high noise sensitivity, intricate computational procedures, and exclusive reliance on a single type of morphological information. In this paper, we introduce the Multiple Morphology-Aware Network (MMA-Net), a novel framework that improves Cobb angle measurement accuracy by integrating multiple spine morphology as attention information. In the MMA-Net, we first feed spine X-ray images into the segmentation network to produce multiple morphological information (spine region, centerline, and boundary) and then concatenate the original X-ray image with the resulting segmentation maps as input for the regression module to perform precise Cobb angle measurement. Furthermore, we devise joint loss functions for our segmentation and regression network training, respectively. We evaluate our method on the AASCE challenge dataset and achieve superior performance with the SMAPE of 7.28% and the MAE of 3.18°, indicating a strong competitiveness compared to other outstanding methods. Consequently, we can offer clinicians automated, efficient, and reliable Cobb angle measurement.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803349
专题工学院_电子与电气工程系
南方科技大学
作者单位
1.Shenzhen Key Laboratory of Robotics Perception and Intelligence and the Department of Electronic and Electrical Engineering, Southern University of Science and Technology in Shenzhen, China
2.Jiaxing Research Institute, Southern University of Science and Technology, Jiaxing, China
第一作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhengxuan Qiu,Jie Yang,Jiankun Wang. MMA-Net: Multiple Morphology-Aware Network for Automated Cobb Angle Measurement[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhengxuan Qiu]的文章
[Jie Yang]的文章
[Jiankun Wang]的文章
百度学术
百度学术中相似的文章
[Zhengxuan Qiu]的文章
[Jie Yang]的文章
[Jiankun Wang]的文章
必应学术
必应学术中相似的文章
[Zhengxuan Qiu]的文章
[Jie Yang]的文章
[Jiankun Wang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。