题名 | Toward Optimal Tabletop Rearrangement with Multiple Manipulation Primitives |
作者 | |
DOI | |
发表日期 | 2024-05-17
|
ISBN | 979-8-3503-8458-1
|
会议录名称 | |
会议日期 | 13-17 May 2024
|
会议地点 | Yokohama, Japan
|
摘要 | In practice, many types of manipulation actions (e.g., pick-n-place and push) are needed to accomplish real-world manipulation tasks. Yet, limited research exists that explores the synergistic integration of different manipulation actions for optimally solving long-horizon task-and-motion planning problems. In this study, we propose and investigate planning high-quality action sequences for solving long-horizon tabletop rearrangement tasks in which multiple manipulation primitives are required. Denoting the problem rearrangement with multiple manipulation primitives (REMP), we develop two algorithms, hierarchical best-first search (HBFS) and parallel Monte Carlo tree search for multi-primitive rearrangement (PMMR) toward optimally resolving the challenge. Extensive simulation and real robot experiments demonstrate that both methods effectively tackle REMP, with HBFS excelling in planning speed and P M MR producing human-like, high-quality solutions with a nearly 100% success rate. Source code and supplementary materials will be available at https://github.com/arc-l/remp. |
学校署名 | 其他
|
相关链接 | [IEEE记录] |
收录类别 | |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803350 |
专题 | 南方科技大学 |
作者单位 | 1.Department of Computer Science, Rutgers, State University of New Jersey, Piscataway, NJ, USA 2.Southern University of Science and Technology, China |
推荐引用方式 GB/T 7714 |
Baichuan Huang,Xujia Zhang,Jingjin Yu. Toward Optimal Tabletop Rearrangement with Multiple Manipulation Primitives[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论