中文版 | English
题名

A Point-to-distribution Degeneracy Detection Factor for LiDAR SLAM using Local Geometric Models

作者
DOI
发表日期
2024-05-17
ISBN
979-8-3503-8458-1
会议录名称
会议日期
13-17 May 2024
会议地点
Yokohama, Japan
摘要
Limited by the working principles, LiDAR-SLAM systems suffer from the degeneration phenomenon in environments such as long corridors and tunnels, due to the lack of sufficient geometric features for frame-to-frame matching. The accuracy and sensitivity of existing degeneracy detection methods need to be further improved. In this paper, we propose a novel method for degeneracy detection using local geometric models based on point-to-distribution matching. To obtain an accurate description of local geometric models, an adaptive adjustment of voxel segmentation according to the point cloud distribution and density is designed. The codes of the proposed method is open-source and available at https://github.com/jisehua/Degenerate-Detection.git. Experiments with public datasets and self-build robots were conducted to evaluate the methods. The results exhibit that our proposed method achieves higher accuracy than the other existing approaches. Applying our proposed method is beneficial for improving the robustness of the LiDAR-SLAM systems.
学校署名
其他
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803352
专题南方科技大学
作者单位
1.Biomimetic and Intelligent Robotics Lab (BIRL), School of Electromechanical Engineer, Guangdong University of Technology, Guangzhou, China
2.JT-Innovation (Guangdong) Intelligent Technology Co., Ltd.
3.Guangdong Key Laboratory of Modern Control Technology, Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou, China
4.College of Engineering, South China Agricultural University, China
5.Shenzhen Key Laboratory of Robotics and Computer Vision, Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Sehua Ji,Weinan Chen,Zerong Su,et al. A Point-to-distribution Degeneracy Detection Factor for LiDAR SLAM using Local Geometric Models[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sehua Ji]的文章
[Weinan Chen]的文章
[Zerong Su]的文章
百度学术
百度学术中相似的文章
[Sehua Ji]的文章
[Weinan Chen]的文章
[Zerong Su]的文章
必应学术
必应学术中相似的文章
[Sehua Ji]的文章
[Weinan Chen]的文章
[Zerong Su]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。