中文版 | English
题名

ATOM: Leveraging Large Language Models for Adaptive Task Object Motion Strategies in Object Rearrangement for Service Robotics

作者
DOI
发表日期
2024-03-31
ISBN
979-8-3503-7001-0
会议录名称
会议日期
29-31 March 2024
会议地点
Guangzhou, China
摘要
In the field of service robotics, multi-object re-arrangement is an indispensable skill, extensively employed in various tasks such as desk clearing, shelf organizing, or furniture arrangement. Traditionally, achieving multi-object rearrangement involves complex steps including precise object recognition, spatial planning, and fine-grained motion control. These methods are not only time-consuming but also struggle to adapt to dynamic environments. Recently, Large Language Models (LLMs) have been gaining increasing attention in the field of artificial intelligence, and their integration with robotic technologies has opened new possibilities for multi-object rearrangement. Our proposed approach leverages the advanced features of LLMs to acquire commonsense knowledge about semantically effective object configurations related to multi-object rearrangement. We then employ LLMs for task planning, resorting to traditional methods only in the final stage for actualizing specific arrangement actions. By combining LLMs with traditional techniques, our method significantly simplifies the process of multi-object rearrange-ment tasks for robots. Furthermore, our approach demonstrates adaptability to dynamic environments, thereby expanding the potential applications of service robots in real-world settings.
学校署名
其他
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803356
专题工学院_机械与能源工程系
作者单位
1.School of Software and Microelectronics, Peking University, Beijing, China
2.School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
3.Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
推荐引用方式
GB/T 7714
Isabel Y.N Guan,Gary Zhang,Xin Liu,et al. ATOM: Leveraging Large Language Models for Adaptive Task Object Motion Strategies in Object Rearrangement for Service Robotics[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Isabel Y.N Guan]的文章
[Gary Zhang]的文章
[Xin Liu]的文章
百度学术
百度学术中相似的文章
[Isabel Y.N Guan]的文章
[Gary Zhang]的文章
[Xin Liu]的文章
必应学术
必应学术中相似的文章
[Isabel Y.N Guan]的文章
[Gary Zhang]的文章
[Xin Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。