中文版 | English
题名

Appearance-invariant Visual Localization for Long-term Navigation

作者
DOI
发表日期
2024-03-31
ISBN
979-8-3503-7001-0
会议录名称
会议日期
29-31 March 2024
会议地点
Guangzhou, China
摘要
Long-term navigation refers to the ability of a mobile robot to navigate effectively over extended periods in environments that may undergo changes. Unlike short-term navigation, which focuses on immediate and local motion estimation, long-term navigation aims to identify environmental changes and maintain a sustainable map that is beneficial to the association between current observations and the visited location. In this paper, a Convolutional Neural Network (CNN) based discriminating model is proposed to quantify the repeatability and the discriminativity of visual features, aiming to filter out the unstable keypoints for the mapping process. Moreover, a novel self-adaptive mechanism for map maintenance is proposed to incrementally update the keypoint dataset in a memory-saving manner. Extensive experimental evaluations are conducted on the CMU Seasons dataset, which suggests that our method increases the success rate of localization from 50% to 86% on average.
学校署名
其他
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803357
专题工学院_电子与电气工程系
作者单位
1.Guangdong Key Laboratory of Modern Control Technology, Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou, China
2.Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
推荐引用方式
GB/T 7714
Zerong Su,Xubin Lin,Li He,et al. Appearance-invariant Visual Localization for Long-term Navigation[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zerong Su]的文章
[Xubin Lin]的文章
[Li He]的文章
百度学术
百度学术中相似的文章
[Zerong Su]的文章
[Xubin Lin]的文章
[Li He]的文章
必应学术
必应学术中相似的文章
[Zerong Su]的文章
[Xubin Lin]的文章
[Li He]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。