中文版 | English
题名

UWM-Net: A Mixture Density Network Approach with Minimal Dataset Requirements for Underwater Image Enhancement

作者
DOI
发表日期
2024-06-27
ISBN
979-8-3503-5410-2
会议录名称
会议日期
25-27 June 2024
会议地点
Singapore, Singapore
摘要
The learning-based underwater image enhancement, which is suitable for batch processing, is a pivotal research direction in underwater image processing. Extensive paired image data are required in existing learning-based methods, which necessitate considerable preprocessing and hinder the application of these methods. To address these limitations, we propose a semi-supervised approach called UWM-Net: firstly, we use a compact dataset of underwater image pairs to train the Mixture Density Network (MDN) with an underwater scene setting; subsequently, U-Net can learn underwater image enhancement more efficiently. The MDN can transform standard images into underwater scenes, reducing the reliance on paired data and making much smaller training datasets. In experimental studies, UWM-Net using only 18 pairs of underwater image data achieves highly competitive results in terms of 3 metrics compared with advanced models.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803360
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
第一作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Jun Huang,Zongze Li,Ruihao Zheng,et al. UWM-Net: A Mixture Density Network Approach with Minimal Dataset Requirements for Underwater Image Enhancement[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jun Huang]的文章
[Zongze Li]的文章
[Ruihao Zheng]的文章
百度学术
百度学术中相似的文章
[Jun Huang]的文章
[Zongze Li]的文章
[Ruihao Zheng]的文章
必应学术
必应学术中相似的文章
[Jun Huang]的文章
[Zongze Li]的文章
[Ruihao Zheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。