题名 | UWM-Net: A Mixture Density Network Approach with Minimal Dataset Requirements for Underwater Image Enhancement |
作者 | |
DOI | |
发表日期 | 2024-06-27
|
ISBN | 979-8-3503-5410-2
|
会议录名称 | |
会议日期 | 25-27 June 2024
|
会议地点 | Singapore, Singapore
|
摘要 | The learning-based underwater image enhancement, which is suitable for batch processing, is a pivotal research direction in underwater image processing. Extensive paired image data are required in existing learning-based methods, which necessitate considerable preprocessing and hinder the application of these methods. To address these limitations, we propose a semi-supervised approach called UWM-Net: firstly, we use a compact dataset of underwater image pairs to train the Mixture Density Network (MDN) with an underwater scene setting; subsequently, U-Net can learn underwater image enhancement more efficiently. The MDN can transform standard images into underwater scenes, reducing the reliance on paired data and making much smaller training datasets. In experimental studies, UWM-Net using only 18 pairs of underwater image data achieves highly competitive results in terms of 3 metrics compared with advanced models. |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803360 |
专题 | 工学院_系统设计与智能制造学院 工学院_计算机科学与工程系 |
作者单位 | 1.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China 2.Department of Computer Science and Engineering, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 系统设计与智能制造学院 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Jun Huang,Zongze Li,Ruihao Zheng,et al. UWM-Net: A Mixture Density Network Approach with Minimal Dataset Requirements for Underwater Image Enhancement[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论