中文版 | English
题名

Towards Lightweight Underwater Depth Estimation

作者
DOI
发表日期
2024-06-27
ISBN
979-8-3503-5410-2
会议录名称
会议日期
25-27 June 2024
会议地点
Singapore, Singapore
摘要
Underwater depth estimation is crucial in the applications of marine robotics. It can provide environment information for target tracking, robot navigation, and 3D reconstruction of underwater terrain. Existing works transform underwater images into in-air conditions to adapt methods that are designed for natural images. However, this may result in expensive computational resources. To overcome this limitation, we propose a lightweight knowledge distillation framework for underwater depth estimation. We utilize a powerful model designed for underwater images as the teacher model and a lightweight CNN model as the student model. We distill global features to enable the student to acquire both local and global information, thereby improving estimation performance. Our framework includes a global transformation module for efficient global feature distillation and a global-local fusion module to combine local and global information for final estimation. Experimental results on the FLSea dataset demonstrate that our student model is lighter than the teacher model while outperforming lightweight in-air models. Our network is 60% lighter than the teacher model and achieves a 3.1% improvement in the δ1 metric compared to the lightweight in-air model.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803361
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science and Engineering, School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, China
第一作者单位系统设计与智能制造学院
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Keyu Zhou,Jin Chen,Shuangchun Gui,et al. Towards Lightweight Underwater Depth Estimation[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Keyu Zhou]的文章
[Jin Chen]的文章
[Shuangchun Gui]的文章
百度学术
百度学术中相似的文章
[Keyu Zhou]的文章
[Jin Chen]的文章
[Shuangchun Gui]的文章
必应学术
必应学术中相似的文章
[Keyu Zhou]的文章
[Jin Chen]的文章
[Shuangchun Gui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。