题名 | A Knowledge Guided Multi-Population Evolutionary Algorithm for Dynamic Workflow Scheduling Problem |
作者 | |
DOI | |
发表日期 | 2024-06-27
|
ISBN | 979-8-3503-5410-2
|
会议录名称 | |
会议日期 | 25-27 June 2024
|
会议地点 | Singapore, Singapore
|
摘要 | The workflow scheduling problem is a fundamental task in cloud computing. This paper addresses the challenge of workflow scheduling in dynamic and uncertain cloud environments, where computing resources may become inaccessible due to hardware or software failures. To tackle this challenge, we propose a novel algorithm called the Order Feature Guided Multi-Population (OFGMP) algorithm for dynamic workflow scheduling in cloud environments. The OFGMP algorithm utilizes a multi-population evolutionary framework, incorporating a knowledge-guided reproduction operator that leverages the order feature of solutions, as well as repair mechanisms to adapt to changing environmental conditions. Extensive experiments are conducted to validate the algorithm’s performance against existing dynamic scheduling approaches. The experimental results demonstrate the superiority of our proposed method over others on a number of test cases. |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803363 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China 2.Department of Computing and Decision Sciences, Lingnan University, Hong Kong SAR |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Jingyuan Xu,Jiajian Yang,Peiru Li,et al. A Knowledge Guided Multi-Population Evolutionary Algorithm for Dynamic Workflow Scheduling Problem[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论