中文版 | English
题名

QSRP: Efficient Reverse $k-\text{Ranks}$ Query Processing on High-Dimensional Embeddings

作者
DOI
发表日期
2024-05-16
ISSN
1063-6382
ISBN
979-8-3503-1716-9
会议录名称
会议日期
13-16 May 2024
会议地点
Utrecht, Netherlands
摘要
Embedding models represent users and products as high-dimensional embedding vectors and are widely used for recommendation. In this paper, we study the reverse $k-\mathbf{ranks}$ query, which finds the users that are the most interested in a product and has many applications including product promotion, targeted advertising, and market analysis. As reverse $k-\mathbf{ranks}$ solutions for low dimensionality (e.g., trees) fail for the high-dimensional embeddings generated by embedding models, we propose the QSRP framework. QSRP precomputes the score table between all user and product embeddings to facilitate pruning and refinement at query time. As the score table is usually large, QSRP samples some of its columns as the index to fit in memory. To tackle the problem that naive uniform sampling results in poor pruning effect, we propose query-aware sampling, which conducts sampling by explicitly maximizing the pruning effect for a set of sample queries. Moreover, we introduce regression-based pruning, which fits cheap linear functions to predict the bounds used for pruning. We also design techniques to build the index with limited memory, reduce index building time, and handle updates. We evaluate QSRP under various configurations and compare with state-of-the-art baselines. The results show that QSRP achieves shorter query time than the baselines in all cases, and the speedup is usually over 100x.
学校署名
其他
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803373
专题工学院_计算机科学与工程系
作者单位
1.Department of Computing, The Hong Kong Polytechnic University
2.Department of Computer Science and Engineering, Southern University of Science and Technology
3.Huawei Technologies Co., Ltd.
第一作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zheng Bian,Xiao Yan,Jiahao Zhang,et al. QSRP: Efficient Reverse $k-\text{Ranks}$ Query Processing on High-Dimensional Embeddings[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng Bian]的文章
[Xiao Yan]的文章
[Jiahao Zhang]的文章
百度学术
百度学术中相似的文章
[Zheng Bian]的文章
[Xiao Yan]的文章
[Jiahao Zhang]的文章
必应学术
必应学术中相似的文章
[Zheng Bian]的文章
[Xiao Yan]的文章
[Jiahao Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。