中文版 | English
题名

Cross-Attention-Guided Wavenet for Mel Spectrogram Reconstruction in The ICASSP 2024 Auditory EEG Challenge

作者
DOI
发表日期
2024-04-19
ISBN
979-8-3503-7452-0
会议录名称
会议日期
14-19 April 2024
会议地点
Seoul, Korea, Republic of
摘要
This paper provides an overview of our submission to Task 2 of the Auditory EEG Challenge at ICASSP 2024 Signal Processing Grand Challenge (SPGC). We introduce a novel approach, employing a cross-attention-guided WaveNet with a coarse-to-fine generation strategy, aimed at enhancing the detailed reconstruction of Mel spectrograms from time-domain EEG. Specifically, the model utilizes WaveNet to sequentially reconstruct the envelope, 10-band Mel, 80-band Mel, and magnitude from coarse to fine granular levels. To bridge the gap between different modalities, we introduce a cross-attention mechanism, exploring correlations across modalities. A combined loss function is employed to refine the reconstruction performance. Notably, we achieved Pearson correlation values of 0.0651 ± 0.0153 for the validation set and 0.0413 ± 0.0169 for the heldout-subjects test set, securing the second position in the competition. We release the training code for our model online1.
学校署名
其他
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803413
专题工学院_电子与电气工程系
作者单位
1.College of Computer Science, Inner Mongolia University, China
2.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
3.Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, China
推荐引用方式
GB/T 7714
Yuan Fang,Hao Li,Xueliang Zhang,et al. Cross-Attention-Guided Wavenet for Mel Spectrogram Reconstruction in The ICASSP 2024 Auditory EEG Challenge[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan Fang]的文章
[Hao Li]的文章
[Xueliang Zhang]的文章
百度学术
百度学术中相似的文章
[Yuan Fang]的文章
[Hao Li]的文章
[Xueliang Zhang]的文章
必应学术
必应学术中相似的文章
[Yuan Fang]的文章
[Hao Li]的文章
[Xueliang Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。