题名 | Cross-Attention-Guided Wavenet for Mel Spectrogram Reconstruction in The ICASSP 2024 Auditory EEG Challenge |
作者 | |
DOI | |
发表日期 | 2024-04-19
|
ISBN | 979-8-3503-7452-0
|
会议录名称 | |
会议日期 | 14-19 April 2024
|
会议地点 | Seoul, Korea, Republic of
|
摘要 | This paper provides an overview of our submission to Task 2 of the Auditory EEG Challenge at ICASSP 2024 Signal Processing Grand Challenge (SPGC). We introduce a novel approach, employing a cross-attention-guided WaveNet with a coarse-to-fine generation strategy, aimed at enhancing the detailed reconstruction of Mel spectrograms from time-domain EEG. Specifically, the model utilizes WaveNet to sequentially reconstruct the envelope, 10-band Mel, 80-band Mel, and magnitude from coarse to fine granular levels. To bridge the gap between different modalities, we introduce a cross-attention mechanism, exploring correlations across modalities. A combined loss function is employed to refine the reconstruction performance. Notably, we achieved Pearson correlation values of 0.0651 ± 0.0153 for the validation set and 0.0413 ± 0.0169 for the heldout-subjects test set, securing the second position in the competition. We release the training code for our model online1. |
学校署名 | 其他
|
相关链接 | [IEEE记录] |
收录类别 | |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803413 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.College of Computer Science, Inner Mongolia University, China 2.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China 3.Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, China |
推荐引用方式 GB/T 7714 |
Yuan Fang,Hao Li,Xueliang Zhang,et al. Cross-Attention-Guided Wavenet for Mel Spectrogram Reconstruction in The ICASSP 2024 Auditory EEG Challenge[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论