题名 | SynMob: Creating High-Fidelity Synthetic GPS Trajectory Dataset for Urban Mobility Analysis |
作者 | |
通讯作者 | Zhao, Xiangyu; Yu, James J. Q. |
发表日期 | 2023
|
会议名称 | 37th Conference on Neural Information Processing Systems (NeurIPS)
|
ISSN | 1049-5258
|
会议录名称 | |
会议日期 | DEC 10-16, 2023
|
会议地点 | null,New Orleans,LA
|
出版地 | 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
|
出版者 | |
摘要 | Urban mobility analysis has been extensively studied in the past decade using a vast amount of GPS trajectory data, which reveals hidden patterns in movement and human activity within urban landscapes. Despite its significant value, the availability of such datasets often faces limitations due to privacy concerns, proprietary barriers, and quality inconsistencies. To address these challenges, this paper presents a synthetic trajectory dataset with high fidelity, offering a general solution to these data accessibility issues. Specifically, the proposed dataset adopts a diffusion model as its synthesizer, with the primary aim of accurately emulating the spatial-temporal behavior of the original trajectory data. These synthesized data can retain the geo-distribution and statistical properties characteristic of real-world datasets. Through rigorous analysis and case studies, we validate the high similarity and utility between the proposed synthetic trajectory dataset and real-world counterparts. Such validation underscores the practicality of synthetic datasets for urban mobility analysis and advocates for its wider acceptance within the research community. Finally, we publicly release the trajectory synthesizer and datasets, aiming to enhance the quality and availability of synthetic trajectory datasets and encourage continued contributions to this rapidly evolving field. The dataset is released for public online availability https://github.com/Applied-Machine-Learning-Lab/SynMob. |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Research Impact Fund[R1015-23]
; APRC -CityU New Research Initiatives (City University of Hong Kong)[9610565]
; CityU -HKIDS Early Career Research Grant[9360163]
; Hong Kong ITC Innovation and Technology Fund Midstream Research Programme for Universities Project[ITS/034/22MS]
; Hong Kong Environmental and Conservation Fund[88/2022]
; SIRG -CityU Strategic Interdisciplinary Research Grant["7020046","7020074"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:001229826601026
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/803418 |
专题 | 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen, Peoples R China 2.City Univ Hong Kong, Hong Kong, Peoples R China 3.Univ Leeds, Leeds, England 4.Univ York, York, England |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhu, Yuanshao,Ye, Yongchao,Wu, Ying,et al. SynMob: Creating High-Fidelity Synthetic GPS Trajectory Dataset for Urban Mobility Analysis[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论