中文版 | English
题名

SynMob: Creating High-Fidelity Synthetic GPS Trajectory Dataset for Urban Mobility Analysis

作者
通讯作者Zhao, Xiangyu; Yu, James J. Q.
发表日期
2023
会议名称
37th Conference on Neural Information Processing Systems (NeurIPS)
ISSN
1049-5258
会议录名称
会议日期
DEC 10-16, 2023
会议地点
null,New Orleans,LA
出版地
10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
出版者
摘要
Urban mobility analysis has been extensively studied in the past decade using a vast amount of GPS trajectory data, which reveals hidden patterns in movement and human activity within urban landscapes. Despite its significant value, the availability of such datasets often faces limitations due to privacy concerns, proprietary barriers, and quality inconsistencies. To address these challenges, this paper presents a synthetic trajectory dataset with high fidelity, offering a general solution to these data accessibility issues. Specifically, the proposed dataset adopts a diffusion model as its synthesizer, with the primary aim of accurately emulating the spatial-temporal behavior of the original trajectory data. These synthesized data can retain the geo-distribution and statistical properties characteristic of real-world datasets. Through rigorous analysis and case studies, we validate the high similarity and utility between the proposed synthetic trajectory dataset and real-world counterparts. Such validation underscores the practicality of synthetic datasets for urban mobility analysis and advocates for its wider acceptance within the research community. Finally, we publicly release the trajectory synthesizer and datasets, aiming to enhance the quality and availability of synthetic trajectory datasets and encourage continued contributions to this rapidly evolving field. The dataset is released for public online availability https://github.com/Applied-Machine-Learning-Lab/SynMob.
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
Research Impact Fund[R1015-23] ; APRC -CityU New Research Initiatives (City University of Hong Kong)[9610565] ; CityU -HKIDS Early Career Research Grant[9360163] ; Hong Kong ITC Innovation and Technology Fund Midstream Research Programme for Universities Project[ITS/034/22MS] ; Hong Kong Environmental and Conservation Fund[88/2022] ; SIRG -CityU Strategic Interdisciplinary Research Grant["7020046","7020074"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:001229826601026
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/803418
专题南方科技大学
作者单位
1.Southern Univ Sci & Technol, Shenzhen, Peoples R China
2.City Univ Hong Kong, Hong Kong, Peoples R China
3.Univ Leeds, Leeds, England
4.Univ York, York, England
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhu, Yuanshao,Ye, Yongchao,Wu, Ying,et al. SynMob: Creating High-Fidelity Synthetic GPS Trajectory Dataset for Urban Mobility Analysis[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Yuanshao]的文章
[Ye, Yongchao]的文章
[Wu, Ying]的文章
百度学术
百度学术中相似的文章
[Zhu, Yuanshao]的文章
[Ye, Yongchao]的文章
[Wu, Ying]的文章
必应学术
必应学术中相似的文章
[Zhu, Yuanshao]的文章
[Ye, Yongchao]的文章
[Wu, Ying]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。