[
[1] SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355: eaad4998.
[2] BUSHUYEV O S, DE LUNA P, DINH C T, et al. What should we make with CO2 and how can we make it?[J] Joule, 2018, 2: 825–832.
[3] ROGELJ J, DEN E M, HOHNE N, et al. Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534: 631–639.
[4] DE L P, HAHN C, HIGGINS D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J] Science, 2019, 364: eaav3506.
[5] FEI H, DONG J, CHEB D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons[J]. Chemical Society Reviews, 2019, 48(20): 5207-5241.
[6] WANG S W, WANG L G, WANG D S, al et. Recent advances of single-atom catalysts in CO2 conversion[J]. Energy & Environmental Science, 2023, 16(7): 2759-2803.
[7] TORRES-MENDEZ C, AXELSSON M, TIAN H N. Small organic molecular electrocatalysts for fuels production[J]. Angewandte Chemie International Edition, 2024, 63(7): e202312879.
[8] YANG S X, YU Y H, GAO X J, et al. Recent advances in electrocatalysis with phthalocyanines[J]. Chemical Society Reviews, 2021, 50(23): 12985-13011.
[9] ZHANG Y, LIN J, CHENG Z, et al. Theoretical screening, regulation, and prediction of transition metal phthalocyanine electrocatalysts for NO reduction into NH3[J]. Journal of Physical Chemistry C, 2023, 127(43): 21097-21105.
[10] JING Z, WANG Y, ZHANG X, et al. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes[J]. Nano Research, 2019, 12: 2330–2334.
[11] WAN Y, ZHOU L, LV R J M C F. Rational design of efficient electrocatalysts for hydrogen production by water electrolysis at high current density[J]. Materials Chemistry Frontiers, 2023, 7(23): 6035-6060.
[12] XIE H, ZHAO Z, LIU T, et al. A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612: 673-678.
[13] GUO J, ZHENG Y, HU Z, et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J]. Nature Energy, 2023, 8: 264-272.
[14] WU R, XU J, ZHAO C L, et al. Dopant triggered atomic configuration activates water splitting to hydrogen[J]. Nature Communications, 2023, 14(1): 2306.
[15] ZANG Y, LU D Q, WANG K, et al. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting[J]. Nature Communications, 2023, 14(1): 1792.
[16] LIU Y, WANG Q, ZHANG J, et al. Recent advances in carbon‐supported noble‐metal electrocatalysts for hydrogen evolution reaction: Syntheses, structures, and properties[J]. Nature Energy, 2022, 12(28): 2200928.
[17] YIN Z, LIU X, CHEN S, et al. Interface engineering and anion engineering of Mo‐based heterogeneous electrocatalysts for hydrogen evolution reaction[J]. Energy and Environmental Material, 2023, 6(1): e12310.
[18] WANG J, GAO Y, KONG H, et al. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances[J]. Chemical Society Reviews, 2020, 49(24): 9154-9196.
[19] SUN H, XU X, SONG Y, et al. Designing high‐valence metal sites for electrochemical water splitting[J]. Advanced Functional Materials, 2021, 31(16): 2009779.
[20] ZHONG Z, FANG J, HU K, et al. Power-to-hydrogen by electrolysis in carbon neutrality: Technology overview and future development[J]. CSEE Journal of Power and Energy Systems, 2023, 9(4): 1266-1283.
[21] SUN H, XU X, KIM H, et al. Advanced electrocatalysts with unusual active sites for electrochemical water splitting[J]. Infomat, 2024, 6(1): e12494.
[22] MU X Q, GU X Y, DAI S P, et al. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting[J]. Energy & Environmental Science, 2022, 15: 4048-4057.
[23] SUN H N, XU X M, KIM H, et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy & Environmental Materials, 2023, 6(5): e12441.
[24] CHANG B, PANG H, RAZIQ F, et al. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: Challenges and perspectives[J]. Energy & Environmental Science, 2023, 16(11): 4714-4758.
[25] RABINOWITZ J A, KANAN M W J N C. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem[J]. Nature Communications, 2020, 11(1): 5231.
[26] LI Z, LI B, YU M, et al. Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion[J]. International Journal of Hydrogen Energy, 2022, 47(63): 26956-26977.
[27] Yang P P, GAO M R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction[J]. Chemical Society Reviews, 2023, 52(13): 4343-4380.
[28] BIRDJA Y Y, PEREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745.
[29] LAI W, QIAO Y, ZHANG J, et al. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction[J]. Energy & Environmental Science, 2022, 15(9): 3603-3629.
[30] TODOROVA T K, SCHREIBER M W, FONTECAVE M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts[J]. ACS Catalysis, 2020, 10(3): 1754-1768.
[31] LIU X, SCHLEXER P, XIAO J, et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper[J]. Nature Communications, 2019, 10: 32.
[32] SINGH M R, CLARK E L, BELL A T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide[J]. Physical Chemistry Chemical Physics, 2015, 17(29): 18924-18936.
[33] CLARK E L, RESASCO J, LANDERS A, et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide[J]. ACS Catalysis, 2018, 8(7): 6560-6570.
[34] HUANG L, GAO G, YANG C, et al. Pressure dependence in aqueous-based electrochemical CO2 reduction[J]. Nature Communications, 2023, 14(1): 2958.
[35] ZHAO X, XIE H, DENG B, et al. Enhanced CO2 reduction with hydrophobic cationic-ionomer layer-modified zero-gap MEA in acidic electrolyte[J]. Chemical Communications, 2024, 60(5): 542-545.
[36] WANG X, JIANG Z, WANG P, et al. Ag+‐doped InSe nanosheets for membrane electrode assembly electrolyzer toward large‐current electroreduction of CO2 to ethanol[J]. Angewandte Chemie International Edition, 2023, 62(48): e202313646.
[37] LEES E W, MOWBRAY B A W, PARLANE F G L, et al. Gas diffusion electrodes and membranes for CO2 reduction electrolysers[J]. Nature Reviews Materials, 2022, 7(1): 55-64.
[38] LIN Y, WANG T, ZHANG L L, et al. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability[J]. Nature Communications, 2023, 14(1): 3575.
[39] REN S, JOULIÉ D, SALVATORE D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019, 365(6451): 367-369.
[40] JOENSEN Ó B, ZELEDÓN Z J, TROTOCHOUD L, et al. Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers[J]. Joule, 2024(early view).
[41] SVEN B, FENG Q C, JN W, et al. Design and diagnosis of high-performance CO2-to-CO electrolyzer cells[J]. Nature Chemical Engineering, 2024, 1:229-239.
[42] XIAO X, ZHANG Z J, TAN P. Unveiling the mysteries of operating voltages of lithium-carbon dioxide batteries[J]. Proceedings of the National Academy of Science, 2023, 120(6): e2217454120.
[43] LI W, ZHANG M H, SUN X Y, et al. Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator[J]. Nature Communications, 2024, 15(1): 803.
[44] ZOU J S, LIANG G M, ZHANG F L, et al. Revisiting the role of discharge products in Li–CO2 batteries[J]. Advanced Materials, 2023, 35(49): 2210671.
[45] LIU B, SUN Y L, LIU L Y, et al. Recent advances in understanding Li–CO2 electrochemistry[J]. Energy & Environmental Science, 2019, 12(3): 887-922.
[46] YAN L, LI P, ZHU Q, et al. Atomically precise electrocatalysts for oxygen reduction reaction[J]. Chem, 2023, 9(2): 280-342.
[47] ZHAO Y, ADIYERI SASEENDRAN D P, HUANG C, et al. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design[J]. Chemical Reviews, 2023, 123(9): 6257-6358.
[48] LIU M, WANG L, ZHAO K, et al. Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications[J]. Energy & Environmental Science, 2019, 12(10): 2890-2923.
[49] SINGH H, ZHUANG S, INGIS B, et al. Carbon-based catalysts for oxygen reduction reaction: A review on degradation mechanisms[J]. Carbon, 2019, 151: 160-174.
[50] LUO E, CHU Y, LIU J, et al. Pyrolyzed M–Nx catalysts for oxygen reduction reaction: progress and prospects[J]. Energy & Environmental Science, 2021, 14(4): 2158-2185.
[51] VARJANI S, SHAHBEIG H, POPAT K, et al. Sustainable management of municipal solid waste through waste-to-energy technologies[J]. Bioresource Technology, 2022, 355: 127247.
[52] SHI L, LIU D, LIN X N, et al. Stable and high-performance flow H2-O2 fuel cells with coupled acidic oxygen reduction and alkaline hydrogen oxidation reactions[J]. Advanced Materials, 2024(early view): 2314077.
[53] WEE J H. Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells?[J]. Journal of Power Sources, 2006, 161(1): 1-10.
[54] HYUN J, KIM H T. Powering the hydrogen future: current status and challenges of anion exchange membrane fuel cells[J]. Energy & Environmental Science, 2023, 16(12): 5633-5662.
[55] WANG Y J, YANG X L, SUN Z D, et al. A systematic review of system modeling and control strategy of proton exchange membrane fuel cell[J]. Energy Reviews, 2024, 3(1): 100054.
[56] SONG C, WONG S S, WINANS R E, et al. Highlights of the 2021–2022 award-winning research accomplishments in the ACS Energy and Fuels Division[J]. ACS Energy Letters, 2023, 8(1): 381-386.
[57] GOSHTASBI A, ERSAL T. Degradation-conscious control for enhanced lifetime of automotive polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2020, 457: 227996.
[58] ZHONG X, SHAO Y, CHEN B, et al. Rechargeable zinc‐air batteries with an ultra‐large discharge capacity per cycle and an ultra‐long cycle life[J]. Advanced Materials, 2023, 35(30): 2301952.
[59] LI T, PENG X, CUI P, et al. Recent progress and future perspectives of flexible metal‐air batteries[J]. Smartmat, 2021, 2(4): 519-553.
[60] LEONG K W, WANG Y, NI M, et al. Rechargeable Zn-air batteries: Recent trends and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2022, 154: 111771.
[61] WANG Q C, KAUSHIK S, XIAO X, et al. Sustainable zinc–air battery chemistry: advances, challenges and prospects[J]. Chemical Society Reviews, 2023, 52(13): 6139-6190.
[62] CAMPOS‐MARTIN J M, BLANCO‐BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984.
[63] CHEN Z, WU J, CHEN Z, et al. Entropy enhanced perovskite oxide ceramic for efficient electrochemical reduction of oxygen to hydrogen peroxide[J]. Angewandte Chemie International Edition, 2022, 61(21): e202200086.
[64] YAMANAKA I, MURAYAMA T. Neutral H2O2 synthesis by electrolysis of water and O2[J]. Angewandte Chemie International Edition, 2008, 47(10): 1900-1902.
[65] DAN M, ZHONG R, HU S, et al. Strategies and challenges on selective electrochemical hydrogen peroxide production: Catalyst and reaction medium design[J]. Chem Catalysis, 2022, 2(8): 1919-1960.
[66] TIAN Y H, DENG D J, XU L, et al. Strategies for sustainable production of hydrogen peroxide via oxygen reduction reaction: From catalyst design to device setup[J]. Nano-Micro Letters, 2023, 15: 122.
[67] ZHANG M, ZHANG K, AI X, et al. Theory-guided electrocatalyst engineering: From mechanism analysis to structural design[J]. Chinese Journal of Catalysis, 2022, 43(12): 2987-3018.
[68] MICHEL C. Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis?[J]. Catalysis Today, 2013, 218: 162-171.
[69] BALANDIN A A. Modern state of the multiplet theor of heterogeneous catalysis[J]. Advances in Catalysis, 1969, 19: 1-210.
[70] CHEN H, ZHANG B, LIANG X, et al. Light alloying element-regulated noble metal catalysts for energy-related applications[J]. Chinese Journal of Catalysis, 2022, 43(3): 611-635.
[71] KIBSGAARD J, CHORKENDORFF I. Considerations for the scaling-up of water splitting catalysts[J]. Nature Energy, 2019, 4(6): 430-433.
[72] SHE L, ZHAO G, MA T, et al. On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment[J]. Advanced Functional Materials, 2022, 32(5): 2108465.
[73] LI Z, CHEN Y, JI S, et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy[J]. Nature Chemistry, 2020, 12(8): 764-772.
[74] LI C J, SHAN G C, GUO C X, et al. Design strategies of Pd-based electrocatalysts for efficient oxygen reduction[J]. Rare Metals, 2023, 42(6): 1778-1799.
[75] LEOW W R, LUM Y, OZDEN A, et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density[J]. Science, 2020, 368: 1228-1233.
[76] NABIL S K, MUZIBUR RAGHUMAN M A, KANNIMUTHU K, et al. Acid–base chemistry and the economic implication of electrocatalytic carboxylate production in alkaline electrolytes[J]. Nature Catalysis, 2024, 7(3): 330-337.
[77] LUO Q, CHEN Q, WANG Y, et al. Facile, general and environmental-friendly fabrication of O/N-codoped porous carbon as a universal matrix for efficient hydrogen evolution electrocatalysts[J]. Chemical Engineering Journal, 2021, 420: 130483.
[78] SHI Z, LI J, WANG Y, et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers[J]. Nature Communications, 2023, 14(1): 843.
[79] ZHAO C X, LIU J N, WANG J, et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chemical Society Reviews, 2021, 50(13): 7745-7778.
[80] WANG Y, CUI X, ZHANG J, et al. Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications[J]. Progress in Materials Science, 2022, 128: 100964.
[81] LIU X, LI B Q, NI B, et al. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts[J]. Journal of Energy Chemistry, 2022, 64: 263-275.
[82] ZHI Q J, JIANG R, YANG X Y, et al. Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H2O2 electroproduction[J]. Nature Communications, 2024, 15(1): 678.
[83] HE H, LIU S, LIU Y, et al. Review and perspectives on carbon-based electrocatalysts for the production of H2O2 via two-electron oxygen reduction[J]. Green Chemistry, 2023, 25(23): 9501-9542.
[84] DE LA TORRE G, CLAESSENS C G, TORRES T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology[J]. Chemical Communications, 2007, (20): 2000-2015.
[85] ZAGAL J H, GRIVEAU S, SILVA J F, et al. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions[J]. Coordination Chemistry Reviews, 2010, 254(23): 2755-2791.
[86] GOUNDEN D, NOMBONA N, ZYL W E V. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications[J]. Coordination Chemistry Reviews, 2020, 420: 213359.
[87] WU Y S, LIANG Y Y, WANG H L. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions[J]. Accounts of Chemical Research, 2021, 54(16): 3149-3159.
[88] WU Y S, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575: 639-642.
[89] WANG Z X, QIAN J, CAO P C, et al. Identification of synergies in Fe, Co-coordinated polyphthalocyanines scaffolds for electrochemical CO2 reduction reaction[J]. 2024, 24(10): 3249-3256.
[90] SAVÉANT J M. Molecular catalysis of electrochemical reactions. Mechanistic Aspects[J]. Chemical Reviews, 2008, 108(7): 2348-2378.
[91] FRANCKE R, SCHILLE B, ROEMELT M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts[J]. Chemical Reviews, 2018, 118(9): 4631-4701.
[92] ZHANG M D, SI D H, YI J D, et al. Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction[J]. Science China Chemistry, 2021, 64(8): 1332-1339.
[93] ZHANG Z, WANG W, WANG X, et al. Ladder-type π-conjugated metallophthalocyanine covalent organic frameworks with boosted oxygen reduction reaction activity and durability for zinc-air batteries[J]. Chemical Engineering Journal, 2022, 435: 133872.
[94] YUE Y, CAI P, XU K, et al. Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts[J]. Journal of the American Chemical Society, 2021, 143(43): 18052-18060.
[95] HUANG S, CHEN K, LI T T. Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis[J]. Coordination Chemistry Reviews, 2022, 464: 214563.
[96] LIU Y, FAN Y S, LIU Z M. Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells[J]. Chemical Engineering Journal, 2019, 361: 416-427.
[97] JIANG Y, XIE Y, JIN X, et al. Highly efficient iron phthalocyanine based porous carbon electrocatalysts for the oxygen reduction reaction[J]. RSC Advances, 2016, 6(82): 78737-78742.
[98] ZHANG R, LI C, CUI H, et al. Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells[J]. Nature Communications, 2023, 14(1): 8036.
[99] ZHANG X, WANG Y, GU M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9): 684-692.
[100] NAM D H, LUNA P D, ROSAS-HERNÁNDEZ A, et al. Molecular enhancement of heterogeneous CO2 reduction[J]. Nature Materials, 2020, 19(3): 266-276.
[101] GU T T, ATTATSI I K, ZHU W H, et al. Enhanced electrocatalytic hydrogen evolutions of Co(II) phthalocyanine through axially coordinated pyridine-pyrene[J]. Inorganica Chimica Acta, 2022, 530: 120696.
[102] KIM Y, KIM D, LEE J, et al. Tuning the electrochemical properties of polymeric cobalt phthalocyanines for efficient water splitting[J]. Advanced Functional Materials, 2021, 31(41): 2103290.
[103] KOU Z, LIU Y, CUI W, et al. Electronic structure optimization of metal–phthalocyanine via confining atomic Ru for all-pH hydrogen evolution[J]. Energy & Environmental Science, 2024, 17(4): 1540-1548.
[104] YI J D, SI D H, XIE R, et al. Conductive two-dimensional phthalocyanine-based metal–organic framework nanosheets for efficient electroreduction of CO2[J]. Angewandte Chemie International Edition, 2021, 60(31): 17108-17114.
[105] CHEN S Y, LI X Q, KAO C W, et al. Unveiling the proton-feeding effect in sulfur-doped Fe−N−C single-atom catalyst for enhanced CO2 electroreduction[J]. Angewandte Chemie International Edition, 2022, 61(32): e202206233.
[106] ZHOU S, ZHANG L J, ZHU L, et al. Amphiphilic cobalt phthalocyanine boosts carbon dioxide reduction[J]. Advanced Materials, 2023, 35(41): 2300923.
[107] CHEN J, ZOU K, DING P, et al. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li–CO2 batteries[J]. Advanced Materials, 2019, 31(2): 1805484.
[108] XU Y, JIANG C, GONG H, et al. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries[J]. Nano Research, 2022, 15(5): 4100-4107.
[109] WANG L, WANG J, GAO X, et al. Periodic one-dimensional single-atom arrays[J]. Journal of the American Chemical Society, 2022, 144(35): 15999-16005.
[110] LIANG Z, GUO H, ZHOU G, et al. Metal–organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2021, 60(15): 8472-8476.
[111] ZHU S, DING L, ZHANG X, et al. Biaxially-strained phthalocyanine at polyoxometalate@carbon nanotube heterostructure boosts oxygen reduction catalysis[J]. Angewandte Chemie International Edition, 2023, 62(42): e202309545.
[112] VON-HIPPEL A. Molecular Engineering[J]. Science, 1956, 123(3191): 315-317.
[113] TANG Y Q, GUO G L, YU J H, et al. Molecular Engineering[J]. Chemistry, 2011, 74(11): 970-982.
[114] YU J H, QIU S R, XU R R. Molecular engineering of porous crystalline materials[J]. Chemistry, 2011, 74(11): 983-988.
[115] YANG Z W, CHEN J M, QIU L Q, et al. Molecular engineering of metal complexes for electrocatalytic carbon dioxide reduction: From adjustment of intrinsic activity to molecular immobilization[J]. Angewandte Chemie International Edition, 2022, 61(44): e202205301.
[116] ZHANG J C, DING J, LIU Y H, et al. Molecular tuning for electrochemical CO2 reduction[J]. Joule, 2023, 7(8):1700-1744.
[117] ZHANG X, WU Z, ZHANG X, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nature Communications, 2017, 8(1): 14675.
[118] ZHAO K M, LIU S Q, LI Y Y, et al. Insight into the mechanism of axial ligands regulating the catalytic activity of Fe–N4 sites for oxygen reduction reaction[J]. Advanced Energy Materials, 2022, 12(11): 2103588.
[119] CHEN S, YE C, WANG Z, et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts[J]. Angewandte Chemie International Edition, 2023, 62(50): e202315621.
[120] DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360: 783-787.
[121] LIU Z Z, LV X M, KONG S Y, et al. Interfacial water tuning by intermolecular spacing for stable CO2 Electroreduction to C2+ Products[J]. Angewandte Chemie International Edition, 2023, 62(43): e202309319.
[122] LI F, THEVENON A, ROSAS-HERNÁNDEZ A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2020, 577: 509-513.
[123] LV B, LI X, GUO K, et al. Controlling oxygen reduction selectivity through steric effects: Electrocatalytic two-electron and four-electron oxygen reduction with cobalt porphyrin atropisomers[J]. Angewandte Chemie International Edition, 2021, 60(23): 12742-12746.
[124] DENG T, JIA S Q, CHEN C J, et al. Polymer modification strategy to modulate reaction microenvironment for enhanced CO2 electroreduction to ethylene[J]. Angewandte Chemie International Edition, 2024, 63(2): e202313796.
[125] WANG Y, WANG M Y, ZHANG Z S, et al. Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts[J]. ACS Catalysis, 2019, 9(7): 6252-6261.
[126] LIN Z C, JIANG Z, YUAN Y B, et al. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction[J]. Chinese Journal of Catalysis, 2022, 43(1): 104-109.
[127] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
[128] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[129] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. The Journal of Chemical Physics, 1996, 105(22): 9982-9985.
[130] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.
[131] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. Journal of Chemical Physics, 2010, 132(15): 154104.
[132] NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.
[133] VANDE VONDELE J, Krack M, Mohamed F, et al. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach[J]. Computer Physics Communications, 2005, 167(2): 103–128.
[134] VANDE VONDELE J, HUTTER J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases[J]. Journal of Chemical Physics, 2007, 127(11): 114105.
[135] LIPPERT G, HUTTER J, PARRINELLO M. A hybrid gaussian and plane wave density functional scheme[J]. Molecular Physics, 1997, 92(3): 477–488.
[136] ISHII A, YAMAMOTO M, ASANO H, et al. DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nanotube functionalization[J]. Journal of Physics: Conference Series, 2008, 100: 52087.
[137] UMADEVI D, SASTRY G N. Quantum mechanical study of physisorption of nucleobases on carbon materials: Graphene versus carbon[J]. Journal of Chemical Letters, 2011, 2(13): 1572–1576.
[138] HU H, WANG X, ATTFIELD J P, et al. Metal nitrides for seawater electrolysis[J]. Chemical Society Reviews, 2024, 53: 163-203
[139] YANG H, DRIESS M, MENEZES P W. Self-supported electrocatalysts for practical water electrolysis[J]. Advanced Energy Materials. 2021, 11(39): 2102074.
[140] YAN D, MEBRAHTU C, WANG S, et al. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output[J]. Angewandte Chemie International Edition, 2023, 62(16): e202214333.
[141] CHENG R, MIN Y, LI H, et al. Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications[J]. Nano Energy, 2023, 115: 108718.
[142] LI W, ZHAO L, JIANG X, et al. Confinement engineering of electrocatalyst surfaces and interfaces[J]. Advanced Functional Materials, 2022, 32(46): 2207727.
[143] WU H, HUANG Q, SHI Y, et al. Electrocatalytic water splitting: Mechanism and electrocatalyst design[J]. Nano Research, 2023, 16(7): 9142–9157.
[144] LI C, KIM S H, LIM H Y, et al. Self‐accommodation induced electronic metal–support interaction on ruthenium site for alkaline hydrogen evolution reaction[J]. Advanced Materials, 2023, 35: 2301369.
[145] GONG F, LIU Y, ZHAO Y, et al. Universal sub‐nanoreactor strategy for synthesis of yolk‐shell MoS2 supported single atom electrocatalysts toward robust hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2023, 62: e202308091.
[146] ZHANG F, LIU Y, YU F, et al. Engineering multilevel collaborative catalytic interfaces with multifunctional iron sites enabling high-performance real seawater splitting[J]. ACS Nano, 2023, 17(2): 1681-1692.
[147] BEYENE B B, YIBELTAL A W, HUNG C H. Highly efficient electrocatalytic hydrogen evolution from neutral aqueous solution by water soluble copper (II) porphyrin[J]. Inorganica Chimica Acta, 2020, 513: 119929.
[148] PEGIS M L, WISE C F, MARTIN D J, et al. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J]. Chemical Reviews, 2018, 118(5): 2340-2391.
[149] ZHANG W, LAI W, CAO R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chemical Reviews, 2017, 117(4): 3717-3797.
[150] BAGLIA R A, ZARAGOZA J P T, GOLDBERG D P. Biomimetic reactivity of oxygen-derived manganese and iron porphyrinoid complexes[J]. Chemical Reviews, 2017, 117(21): 13320-13352.
[151] ANDREDIS E S, JACQUES P A, TRAN P D, et al. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions[J]. Nature Chemistry, 2013, 5(1): 48-53
[152] LI X, LEI H, LIU J, et al. Carbon nanotubes with cobalt corroles for hydrogen and oxygen evolution in pH 0–14 solutions[J]. Angewandte Chemie International Edition, 2018, 57(46): 15070-15075.
[153] MICHERONI D, LAN G X, LIN W B, et al. Efficient electrocatalytic proton reduction with carbon nanotube-supported metal–organic frameworks[J]. Journal of the American Chemistry Society, 2018, 140(46): 15591-15595.
[154] YU Q M, ZHANG Z Y, LIU H M, et al. Why do platinum catalysts show diverse electrocatalytic performance[J]. Fundamental Research, 2023, 3(5): 804-808.
[155] WAN C Z, ZHANG Z S, DONG J C, et al. Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction[J]. Nature Materials, 2023, 22(8): 1022-1029.
[156] LV F, SUN M Z, HU Y P, et al. Near-unity electrochemical conversion of nitrate to ammonia on crystalline nickel porphyrin-based covalent organic frameworks[J]. Energy Environmental Science, 2023, 16(1): 201–209.
[157] FANG S, ZHU X R, LIU X K, et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction[J]. Nature Communication, 2020, 11(1): 1029.
[158] SUN T T, ZHAO S, CHEN W X, et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst[J]. Proceedings of the National Academy of Science, 2018, 115(50): 12692-12697.
[159] LIANG H W, BRÜLLER S, DONG R H, et al. Molecular metal-Nx centers in porous carbon for electrocatalytic hydrogen evolution[J]. Nature Communication, 2015, 6: 7992.
[160] FEI H L, DONG J C, ARELLANO-JIMÉNEZ M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communication, 2015, 6: 8668.
[161] LIU R, GONG Z C, LIU J B, et al. Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation[J]. Advanced Materials, 2021, 33(41): 2103533.
[162] ZHANG Y Y, CHEN S T, ZHANG Y X, et al. Hydrogen‐bond regulation of the microenvironment of Ni (II)‐porphyrin bifunctional electrocatalysts for efficient overall water splitting[J]. Advanced Materials, 2023, 35(19): 2210727.
[163] WANG A J, LI C, ZHANG J, et al. Graphene-oxide-supported covalent organic polymers based on zinc phthalocyanine for efficient optical limiting and hydrogen evolution[J]. Journal of Colloid and Interface Science, 2019, 556: 159-171.
[164] XU G L, LEI H T, ZHOU G J, et al. Boosting hydrogen evolution by using covalent frameworks of fluorinated cobalt porphyrins supported on carbon nanotubes[J]. Chemistry Communication, 2019, 55(84): 12647-12650.
[165] SHE X J, ZHAI L L, WANG Y F, et al. Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A[J]. Nature Energy, 2024, 9: 81-91.
[166] CHEN C, LI J Z, TAN X, et al. Harnessing single-atom catalysts for CO2 electroreduction: a review of recent advances[J]. Energy & Environmental Science Catalysis, 2023, 2: 71-93.
[167] JI Y L, GUAN A X, ZHENG G F, et al. Copper-based catalysts for electrochemical carbon monoxide reduction[J]. Cell Reports Physical Science, 2022, 3(10): 101072.
[168] ZHI X, VASILEFF A, ZHENG Y, et al. Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction[J]. Energy & Environmental Science, 2021, 14: 3912-3930.
[169] WANG Q, WEI H H, LIU P, et al. Recent advances in copper-based catalysts for electrocatalytic CO2 reduction toward multi-carbon products[J]. Nano Research Energy, 2024, 3: 9120112.
[170] LIU H M, YAN T, TAN S D, et al. Observation on microenvironment changes of dynamic catalysts in acidic CO2 reduction[J]. Journal of the American Chemical Society, 2024, 146(8): 5333-5342.
[171] WANG Y, ZHANG J R, ZHAO J Y, et al. Strong hydrogen-bonded interfacial water inhibiting hydrogen evolution kinetics to promote electrochemical CO2 reduction to C2+[J]. ACS Catalysis, 2024, 14(5): 3457-3465.
[172] YANG X Z, DING H W, LI S N, et al. Cation-induced interfacial hydrophobic microenvironment promotes the C–C coupling in electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2024, 146(8): 5532-5542.
[173] SU J J, ZHANG J J, CHEN J C, et al. Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrially relevant current[J]. Energy & Environmental Science, 2021, 14(1): 483-492.
[174] CHEN K J, CAO M Q, LIN Y Y, et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2[J]. Advanced Functional Materials, 2022, 32(10): 2111322.
[175] SUN K A, YU K, FANG J J, et al. Nature-inspired design of molybdenum–selenium dual-single-atom electrocatalysts for CO2 reduction[J]. Advanced Materials, 2022, 34(44): 2206478.
[176] WANG X Y, WANG Y, SANG X H, et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2021, 60(8): 4192-4198.
[177] FU H Q, LIU J X, BEDFORD N M, et al. Synergistic Cr2O3@Ag heterostructure enhanced electrocatalytic CO2 reduction to CO[J]. Advanced Materials, 2022, 34(29): 2202854.
[178] HAO Y A, HU F, ZHU S Q, et al. MXene-regulated metal-oxide interfaces with modified intermediate configurations realizing nearly 100% CO2 electrocatalytic conversion[J]. Angewandte Chemie International Edition, 2023, 62(35): e202304179.
[179] ZHANG Z, WEN G B, LUO D, et al. “Two ships in a bottle” design for Zn–Ag–O catalyst enabling selective and long-lasting CO2 electroreduction[J]. Journal of the American Chemical Society, 2021, 143(18): 6855-6864.
[180] WANG T F, WANG J H, LU C B, et al. Single-atom anchored curved carbon surface for efficient CO2 electro-reduction with nearly 100% CO selectivity and industrially-relevant current density[J]. Advanced Materials, 2023, 35(35): 2205553.
[181] SENFTLE T P, CARTER E A. The holy grail: Chemistry enabling an economically viable CO2 capture, utilization, and storage strategy[J]. Accounts of Chemical Research, 2017, 50(3): 472-475.
[182] MCDONALD T M, HERM Z R, BLOCH E D, et al. Carbon dioxide capture in metal–organic frameworks[J]. Chemical Reviews, 2012, 243: 724-781.
[183] DUAN X C, XU J T, WEI Z X, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials, 2017, 29(41): 1701784.
[184] LIU B, SUN Y L, LIU L Y, et al. Recent advances in understanding Li–CO2 electrochemistry[J]. Energy & Environmental Science, 2019, 12(3): 887-922.
[185] YANG C, GUO K K, YUAN D W, et al. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery[J]. Journal of the American Chemical Society, 2020, 142(15): 6983-6990.
[186] QIAO Y, YI J, WU S C. Li-CO2 electrochemistry: A new strategy for CO2 fixation and energy storage[J]. Joule, 2017, 1(2): 359-370.
[187] ZHOU J W, LI X L, YANG C, et al. A quasi-solid-state flexible fiber-shaped Li–CO2 battery with low overpotential and high energy efficiency[J]. Advanced Materials, 2019, 31(3): 1804439.
[188] LI X, WANG H, CHEN Z X, et al. Covalent-organic-framework-based Li–CO2 batteries[J]. Advanced Materials, 2019, 31(48): 1905879.
[189] CHOU S L, DOU S X. Boosting up the Li-CO2 battery by the ultrathin RuRh nanosheet[J]. Matter, 2020, 2(6): 1356-1358.
[190] XING Y, YANG Y, LI D H, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium–CO2 batteries[J]. Advanced Materials, 2019, 30(51): 1803124.
[191] ZHANG Z, YANG C, WU S S, et al. Exploiting synergistic effect by integrating ruthenium–copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li–CO2 batteries[J]. Advanced Energy Materials, 2019, 9(8): 1802805.
[192] JIAN T Z, MA W Q, HOU J G, et al. From Ru to RuAl intermetallic/Ru heterojunction: Enabling high reversibility of the CO2 redox reaction in Li–CO2 battery based on lowered interface thermodynamic energy barrier[J]. Nano Energy, 2023, 118: 108998.
[193] ZHANG Z, WANG X G, ZHANG X, et al. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene[J]. Advanced Science, 2018, 5(2): 1700567.
[194] LI S W, DONG Y, ZHOU J W, et al. Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO2 electrodes in Li–CO2 batteries[J]. Energy & Environmental Science, 2018, 11(5): 1318-1325.
[195] LIU Y Q, ZHAO S Y, WANG D S, et al. Toward an understanding of the reversible Li-CO2 batteries over metal–N4–functionalized graphene electrocatalysts[J]. ACS Nano, 2022, 16(1): 1523-1532.
[196] CHEN J M, ZOU K Y, DING P, et al. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li–CO2 batteries[J]. Advanced Materials, 2019, 31(2): 1805484.
[197] LI X L, ZHANG J X, QI G C, et al. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries[J]. Energy Storage Materials, 2021, 35: 148-156.
[198] HU C, GONG L, XIAO Y, et al. High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms[J]. Advanced Materials, 2020, 32(16): 1907436.
[199] THOKA S, CHEN C J, JENA A, et al. Spinel zinc cobalt oxide (ZnCo2O4) porous nanorods as a cathode material for highly durable Li–CO2 batteries[J], ACS Applied Materials Interfaces, 2020, 12(15): 17353-17363.
[200] ZHANG X, ZHANG Q, ZHANG Z, et al. Rechargeable Li–CO2 batteries with carbon nanotubes as air cathodes[J]. Chemical Communications, 2015, 51(78): 14636-14639.
[201] LI S W, DONG Y, ZHOU J W, et al. Carbon dioxide in the cage: Manganese metal-organic frameworks for high performance CO2 electrodes in Li–CO2 batteries[J]. Energy & Environmental Science, 2018, 11(5): 1318-1325.
[202] ZHANG Z, ZHANG Z, LIU P, et al. Identification of cathode stability in Li–CO2 batteries with Cu nanoparticles highly dispersed on N-doped Graphene[J], Journal of Materials Chemistry A, 2018, 6(7): 3218-3223.
[203] ZHANG P, CHEN H C, ZHU H Y, et al. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction[J]. Nature Communication, 2024, 15(1): 2062.
[204] CHAI L L, SONG J L, KUMAR A, et al. Bimetallic-MOF derived carbon with single Pt anchored C4 atomic group constructing super fuel cell with ultrahigh power density and self-change ability[J]. Advanced Materials, 2024, 36(1): 2308989.
[205] DENG Z P, GONG Z, GONG M X, et al. Multiscale regulation of ordered PtCu intermetallic electrocatalyst for highly durable oxygen reduction reaction[J]. Nano Letters, 2024, 24(13): 3994-4001.
[206] NIU H T, XIA C F, HUANG L, et al. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis[J]. Chinese Journal of Catalysis, 2022, 43(6): 1459-1472.
[207] JASINSKI R. A new fuel cell cathode catalyst. Nature, 1964, 201: 1212-1213.
[208] WANG H G, WU Q, CHENG L Q, et al. Porphyrin- and phthalocyanine-based systems for rechargeable batteries[J]. Energy Storage Materials, 2022, 52: 495-513.
[209] WU Y, LIU J, SUN Q H, et al. Molecular catalyst of Fe phthalocyanine loaded into In-based MOF-derived defective carbon nanoflowers for oxygen reduction[J]. Chemical Engineering Journal, 2024, 483: 149243.
[210] HONG Y S, LI L B, HUANG B Y, et al. Molecular control of carbon-based oxygen reduction electrocatalysts through metal macrocyclic complexes functionalization[J]. Advanced Energy Materials, 2021, 11(33): 2100866.
[211] CHEN K J, LIU K, AN P D, et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction[J]. Nature Communications, 2020, 11(1): 4173.
[212] YUAN S, PENG J Y, ZHANG Y R, et al. Tuning the catalytic activity of Fe-phthalocyanine-based catalysts for the oxygen reduction reaction by ligand functionalization[J]. ACS Catalysis, 2022, 12(12): 7278-7287.
[213] WANG Y, ZHOU T P, RUAN S S, et al. Directional manipulation of electron transfer by energy level engineering for efficient cathodic oxygen reduction[J]. Nano Letters, 2022, 22(16): 6622-6630.
[214] YUAN Y B, LI H, JIANG Z, et al. Deciphering the selectivity descriptors of heterogeneous metal phthalocyanine electrocatalysts for hydrogen peroxide production[J]. Chemical Science, 2022, 13: 11260.
[215] LI X Y, WU X S, ZHAO Y, et al. Promoting oxygen reduction reaction by inducing out-of-plane polarization in a metal phthalocyanine catalyst[J]. Advanced Materials, 2023, 35(30): 2302467.
[216] YU X Z, LAI S J, XIN S S, et al. Coupling of iron phthalocyanine at carbon defect site via π-π stacking for enhanced oxygen reduction reaction[J]. Applied Catalysis B-Environmental, 2021, 280: 119437.
[217] SUN C Y, LI Z F, YANG J W, et al. Two-dimensional closely packed amide polyphthalocyanine iron absorbed on Vulcan XC-72 as an efficient electrocatalyst for oxygen reduction reaction[J]. Catalysis Today, 2020, 353: 279-286.
[218] LI J C, MAURYA S, KIM Y S, et al. Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping[J]. ACS Catalysis, 2020, 10(4): 2452-2458.
[219] ZHANG X B, HAN X, JIANG Z, et al. Atomically dispersed hierarchically ordered porous Fe–N–C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery[J]. Nano Energy, 2020, 71: 104547.
[220] KUMAR A, SUN K, DUAN X X, et al. Construction of dual-atom Fe via face-to-face assembly of molecular phthalocyanine for superior oxygen reduction reaction[J]. Chemistry of Materials, 2022, 34(12): 5598-5606.
[221] LUO Y J, CHEN Y H, XUE Y L, et al. Electronic structure regulation of iron phthalocyanine induced by anchoring on heteroatom-doping carbon sphere for efficient oxygen reduction reaction and Al–air battery[J]. Small, 2022, 18(2): 2105594.
[222] WU X, CHENG Y, VEDER J P, et al. An efficient bio-inspired oxygen reduction reaction catalyst: MnOx nanosheets incorporated iron phthalocyanine functionalized graphene[J]. Energy & Environmental Materials, 2021, 4(3): 474-480.
[223] WANG Y B, LI K Q, CHENG R Q, et al. Enhanced electronic interaction between iron phthalocyanine and cobalt single atoms promoting oxygen reduction in alkaline and neutral aluminum-air batteries[J]. Chemical Engineering Journal, 2022, 450: 138213.
[224] ZHU Y W, JIANG Y M, LI H J W, et al. Tip-like Fe−N4 sites induced surface microenvironments regulation boosts the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2024, 43(11): e202309370.
[225] LIU H, JIANG L Z, SUN Y Y, et al. Asymmetric N, P-coordinated single-atomic Fe sites with Fe2P nanoclusters/nanoparticles on porous carbon nanosheets for highly efficient oxygen electroreduction[J]. Advanced Energy Materials, 2023, 13(32): 2301223.
[226] ZONG L B, FAN K C, CUI L X, et al. Constructing Fe-N4 sites through anion exchange-mediated transformation of Fe coordination environments in hierarchical carbon support for efficient oxygen reduction[J]. Angewandte Chemie International Edition, 2023, 135(38): e202309784.
[227] KIM M, FIRETEIN K L, FERNANDO J F S, et al. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics[J]. Chemical Science, 2022, 13(36): 10836-10845.
修改评论