中文版 | English
题名

金属酞菁基电催化剂的分子工程及应用研究

其他题名
MOLECULAR ENGINEERING AND APPLICATION STUDY OF METAL PHTHALOCYANINE BASED ELECTROCATALYSTS
姓名
姓名拼音
LI Huan
学号
11930692
学位类型
博士
学位专业
08 工学
学科门类/专业学位类别
08 工学
导师
梁永晔
导师单位
材料科学与工程系
论文答辩日期
2024-05-11
论文提交日期
2024-07-16
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

新能源时代背景下,电化学能源转化技术以其清洁、高效特点,在可持续能源的生产、存储与利用中扮演着关键角色。电化学能源转化过程一般需要电催化剂来促进化学反应的进行,而电催化剂性能的优劣制约着电化学转化效率。金属酞菁(MPc)基电催化剂因其结构明确和性能良好等特点而受到关注。但在面向工业级条件的实际应用方面,MPc基电催化剂还存在着明显不足。为了拓展MPc基电催化剂的应用潜力,本论文选择了催化性能较好、易于制备的三种非贵金属MPc(CoPc、NiPc、FePc),并构建了MPc分子锚定于多壁碳纳米管(CNTs)的单分子分散电催化剂(MPc MDEs)体系。通过分子结构与基底等分子工程调控,优化电催化性能,并研究了它们在相应电化能源转化系统中的应用。

在电解水析氢反应(HER)中,发展了多尺度工程调控策略,实现了CoPc MDEs在工业级电流密度下的稳定运行。通过理论计算和实验测试,发现MDE的构建能有效保障分子与碳基底的强相互作用,揭示了电荷传输是影响分子电催化剂表观性能的关键;通过氰基(CN)引入的结构调控,优化了电催化剂本征活性,有效降低了CoPc MDE催化剂在-10 mA cm-2电流密度下的过电位;基于三维自支撑电极的构筑和亲水基团(DEG)的引入,提升了电催化剂整体传质能力。优化后的CoPc-DEG MDE@CC可在-1000 mA cm-2的电流密度下稳定工作25小时。

在水相二氧化碳还原反应(CO2RR)中,发展了氟(F)修饰调控策略,构筑的NiPc-F MDEs在工业级电流密度下能够快速、稳定、高选择性地实现CO2电还原至CO。在NiPc MDE电极的构筑中,发现疏水组分PTFE的引入可以有效提高电极材料的选择性和稳定性,但会损失部分催化活性。通过在NiPc配体中引入8个F原子,可以增强分子在催化反应中的结构稳定性以及与碳基底的相互作用强度,提高NiPc-F MDE的催化选择性和活性。进一步通过多尺度工程调控策略,在气体扩散层中引入强疏水性分子(C8SiF13Cl3H4)以及催化层碳基底结构的调控,增强了电极的传质能力和三相界面稳定性。将优化后的催化剂电极NiPc-F MDE-GDE-A组装于流动型电解池中,可在-300 mA cm-2工业级电流密度下稳定运行45小时,产CO法拉第效率≥98%。

在基于有机电解质的锂-二氧化碳(Li-CO2)电池应用中,开发了放电电压为2.67 V,电容量达10800 mAh g-1的NiPc MDE阴极电催化剂。NiPc MDE的构建可以实现NiPc分子催化性能优势和CNTs结构优势互补,能有效地电催化CO2还原,并促进Li2CO3的可逆转化。将CN引入NiPc配体中,显著增强了NiPc分子与CNTs之间的相互作用。将优化后的NiPc-CN MDE应用在Li-CO2电池阴极中,展现出2.72 V的高放电电压和1.4 V的充放电位差,并能够稳定运行120次循环以上,展现出良好的充放电可逆性。

在氧气还原反应(ORR)中,发展了双重分子结构调控方法,构筑的FePc MDEs实现了高效四电子转移的ORR催化。通过取代基修饰,发展的十六氟基(16F)取代的FePc-16F MDEs,有效避免了CN调控引入的副活性中心问题,综合提升了FePc MDEs电催化活性和选择性。进一步地,利用碘离子(I-)对酞菁金属中心Fe进行轴向配位,所制备的FePc-16F-I MDE表现出更高的ORR催化活性,在碱性环境中半波电位达0.951 V。在锌-空气气电池中,FePc-16F-I MDE最大功率密度和比容量分别可达203 mW cm-2和821 mAh g-1Zn,高于商业Pt/C催化剂126 mW cm-2的最大功率密度和755 mAh g-1Zn的比容量。

关键词
语种
中文
培养类别
独立培养
入学年份
2019
学位授予年份
2024-06
参考文献列表

[


[1] SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355: eaad4998.

[2] BUSHUYEV O S, DE LUNA P, DINH C T, et al. What should we make with CO2 and how can we make it?[J] Joule, 2018, 2: 825–832.

[3] ROGELJ J, DEN E M, HOHNE N, et al. Paris agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature, 2016, 534: 631–639.

[4] DE L P, HAHN C, HIGGINS D, et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes?[J] Science, 2019, 364: eaav3506.

[5] FEI H, DONG J, CHEB D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons[J]. Chemical Society Reviews, 2019, 48(20): 5207-5241.

[6] WANG S W, WANG L G, WANG D S, al et. Recent advances of single-atom catalysts in CO2 conversion[J]. Energy & Environmental Science, 2023, 16(7): 2759-2803.

[7] TORRES-MENDEZ C, AXELSSON M, TIAN H N. Small organic molecular electrocatalysts for fuels production[J]. Angewandte Chemie International Edition, 2024, 63(7): e202312879.

[8] YANG S X, YU Y H, GAO X J, et al. Recent advances in electrocatalysis with phthalocyanines[J]. Chemical Society Reviews, 2021, 50(23): 12985-13011.

[9] ZHANG Y, LIN J, CHENG Z, et al. Theoretical screening, regulation, and prediction of transition metal phthalocyanine electrocatalysts for NO reduction into NH3[J]. Journal of Physical Chemistry C, 2023, 127(43): 21097-21105.

[10] JING Z, WANG Y, ZHANG X, et al. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes[J]. Nano Research, 2019, 12: 2330–2334.

[11] WAN Y, ZHOU L, LV R J M C F. Rational design of efficient electrocatalysts for hydrogen production by water electrolysis at high current density[J]. Materials Chemistry Frontiers, 2023, 7(23): 6035-6060.

[12] XIE H, ZHAO Z, LIU T, et al. A membrane-based seawater electrolyser for hydrogen generation[J]. Nature, 2022, 612: 673-678.

[13] GUO J, ZHENG Y, HU Z, et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J]. Nature Energy, 2023, 8: 264-272.

[14] WU R, XU J, ZHAO C L, et al. Dopant triggered atomic configuration activates water splitting to hydrogen[J]. Nature Communications, 2023, 14(1): 2306.

[15] ZANG Y, LU D Q, WANG K, et al. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting[J]. Nature Communications, 2023, 14(1): 1792.

[16] LIU Y, WANG Q, ZHANG J, et al. Recent advances in carbon‐supported noble‐metal electrocatalysts for hydrogen evolution reaction: Syntheses, structures, and properties[J]. Nature Energy, 2022, 12(28): 2200928.

[17] YIN Z, LIU X, CHEN S, et al. Interface engineering and anion engineering of Mo‐based heterogeneous electrocatalysts for hydrogen evolution reaction[J]. Energy and Environmental Material, 2023, 6(1): e12310.

[18] WANG J, GAO Y, KONG H, et al. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances[J]. Chemical Society Reviews, 2020, 49(24): 9154-9196.

[19] SUN H, XU X, SONG Y, et al. Designing high‐valence metal sites for electrochemical water splitting[J]. Advanced Functional Materials, 2021, 31(16): 2009779.

[20] ZHONG Z, FANG J, HU K, et al. Power-to-hydrogen by electrolysis in carbon neutrality: Technology overview and future development[J]. CSEE Journal of Power and Energy Systems, 2023, 9(4): 1266-1283.

[21] SUN H, XU X, KIM H, et al. Advanced electrocatalysts with unusual active sites for electrochemical water splitting[J]. Infomat, 2024, 6(1): e12494.

[22] MU X Q, GU X Y, DAI S P, et al. Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for large-current-density water splitting[J]. Energy & Environmental Science, 2022, 15: 4048-4057.

[23] SUN H N, XU X M, KIM H, et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy & Environmental Materials, 2023, 6(5): e12441.

[24] CHANG B, PANG H, RAZIQ F, et al. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: Challenges and perspectives[J]. Energy & Environmental Science, 2023, 16(11): 4714-4758.

[25] RABINOWITZ J A, KANAN M W J N C. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem[J]. Nature Communications, 2020, 11(1): 5231.

[26] LI Z, LI B, YU M, et al. Amorphous metallic ultrathin nanostructures: A latent ultra-high-density atomic-level catalyst for electrochemical energy conversion[J]. International Journal of Hydrogen Energy, 2022, 47(63): 26956-26977.

[27] Yang P P, GAO M R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction[J]. Chemical Society Reviews, 2023, 52(13): 4343-4380.

[28] BIRDJA Y Y, PEREZ-GALLENT E, FIGUEIREDO M C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4(9): 732-745.

[29] LAI W, QIAO Y, ZHANG J, et al. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction[J]. Energy & Environmental Science, 2022, 15(9): 3603-3629.

[30] TODOROVA T K, SCHREIBER M W, FONTECAVE M. Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts[J]. ACS Catalysis, 2020, 10(3): 1754-1768.

[31] LIU X, SCHLEXER P, XIAO J, et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper[J]. Nature Communications, 2019, 10: 32.

[32] SINGH M R, CLARK E L, BELL A T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide[J]. Physical Chemistry Chemical Physics, 2015, 17(29): 18924-18936.

[33] CLARK E L, RESASCO J, LANDERS A, et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide[J]. ACS Catalysis, 2018, 8(7): 6560-6570.

[34] HUANG L, GAO G, YANG C, et al. Pressure dependence in aqueous-based electrochemical CO2 reduction[J]. Nature Communications, 2023, 14(1): 2958.

[35] ZHAO X, XIE H, DENG B, et al. Enhanced CO2 reduction with hydrophobic cationic-ionomer layer-modified zero-gap MEA in acidic electrolyte[J]. Chemical Communications, 2024, 60(5): 542-545.

[36] WANG X, JIANG Z, WANG P, et al. Ag+‐doped InSe nanosheets for membrane electrode assembly electrolyzer toward large‐current electroreduction of CO2 to ethanol[J]. Angewandte Chemie International Edition, 2023, 62(48): e202313646.

[37] LEES E W, MOWBRAY B A W, PARLANE F G L, et al. Gas diffusion electrodes and membranes for CO2 reduction electrolysers[J]. Nature Reviews Materials, 2022, 7(1): 55-64.

[38] LIN Y, WANG T, ZHANG L L, et al. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability[J]. Nature Communications, 2023, 14(1): 3575.

[39] REN S, JOULIÉ D, SALVATORE D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019, 365(6451): 367-369.

[40] JOENSEN Ó B, ZELEDÓN Z J, TROTOCHOUD L, et al. Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers[J]. Joule, 2024(early view).

[41] SVEN B, FENG Q C, JN W, et al. Design and diagnosis of high-performance CO2-to-CO electrolyzer cells[J]. Nature Chemical Engineering, 2024, 1:229-239.

[42] XIAO X, ZHANG Z J, TAN P. Unveiling the mysteries of operating voltages of lithium-carbon dioxide batteries[J]. Proceedings of the National Academy of Science, 2023, 120(6): e2217454120.

[43] LI W, ZHANG M H, SUN X Y, et al. Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator[J]. Nature Communications, 2024, 15(1): 803.

[44] ZOU J S, LIANG G M, ZHANG F L, et al. Revisiting the role of discharge products in Li–CO2 batteries[J]. Advanced Materials, 2023, 35(49): 2210671.

[45] LIU B, SUN Y L, LIU L Y, et al. Recent advances in understanding Li–CO2 electrochemistry[J]. Energy & Environmental Science, 2019, 12(3): 887-922.

[46] YAN L, LI P, ZHU Q, et al. Atomically precise electrocatalysts for oxygen reduction reaction[J]. Chem, 2023, 9(2): 280-342.

[47] ZHAO Y, ADIYERI SASEENDRAN D P, HUANG C, et al. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design[J]. Chemical Reviews, 2023, 123(9): 6257-6358.

[48] LIU M, WANG L, ZHAO K, et al. Atomically dispersed metal catalysts for the oxygen reduction reaction: synthesis, characterization, reaction mechanisms and electrochemical energy applications[J]. Energy & Environmental Science, 2019, 12(10): 2890-2923.

[49] SINGH H, ZHUANG S, INGIS B, et al. Carbon-based catalysts for oxygen reduction reaction: A review on degradation mechanisms[J]. Carbon, 2019, 151: 160-174.

[50] LUO E, CHU Y, LIU J, et al. Pyrolyzed M–Nx catalysts for oxygen reduction reaction: progress and prospects[J]. Energy & Environmental Science, 2021, 14(4): 2158-2185.

[51] VARJANI S, SHAHBEIG H, POPAT K, et al. Sustainable management of municipal solid waste through waste-to-energy technologies[J]. Bioresource Technology, 2022, 355: 127247.

[52] SHI L, LIU D, LIN X N, et al. Stable and high-performance flow H2-O2 fuel cells with coupled acidic oxygen reduction and alkaline hydrogen oxidation reactions[J]. Advanced Materials, 2024(early view): 2314077.

[53] WEE J H. Which type of fuel cell is more competitive for portable application: Direct methanol fuel cells or direct borohydride fuel cells?[J]. Journal of Power Sources, 2006, 161(1): 1-10.

[54] HYUN J, KIM H T. Powering the hydrogen future: current status and challenges of anion exchange membrane fuel cells[J]. Energy & Environmental Science, 2023, 16(12): 5633-5662.

[55] WANG Y J, YANG X L, SUN Z D, et al. A systematic review of system modeling and control strategy of proton exchange membrane fuel cell[J]. Energy Reviews, 2024, 3(1): 100054.

[56] SONG C, WONG S S, WINANS R E, et al. Highlights of the 2021–2022 award-winning research accomplishments in the ACS Energy and Fuels Division[J]. ACS Energy Letters, 2023, 8(1): 381-386.

[57] GOSHTASBI A, ERSAL T. Degradation-conscious control for enhanced lifetime of automotive polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2020, 457: 227996.

[58] ZHONG X, SHAO Y, CHEN B, et al. Rechargeable zinc‐air batteries with an ultra‐large discharge capacity per cycle and an ultra‐long cycle life[J]. Advanced Materials, 2023, 35(30): 2301952.

[59] LI T, PENG X, CUI P, et al. Recent progress and future perspectives of flexible metal‐air batteries[J]. Smartmat, 2021, 2(4): 519-553.

[60] LEONG K W, WANG Y, NI M, et al. Rechargeable Zn-air batteries: Recent trends and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2022, 154: 111771.

[61] WANG Q C, KAUSHIK S, XIAO X, et al. Sustainable zinc–air battery chemistry: advances, challenges and prospects[J]. Chemical Society Reviews, 2023, 52(13): 6139-6190.

[62] CAMPOS‐MARTIN J M, BLANCO‐BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984.

[63] CHEN Z, WU J, CHEN Z, et al. Entropy enhanced perovskite oxide ceramic for efficient electrochemical reduction of oxygen to hydrogen peroxide[J]. Angewandte Chemie International Edition, 2022, 61(21): e202200086.

[64] YAMANAKA I, MURAYAMA T. Neutral H2O2 synthesis by electrolysis of water and O2[J]. Angewandte Chemie International Edition, 2008, 47(10): 1900-1902.

[65] DAN M, ZHONG R, HU S, et al. Strategies and challenges on selective electrochemical hydrogen peroxide production: Catalyst and reaction medium design[J]. Chem Catalysis, 2022, 2(8): 1919-1960.

[66] TIAN Y H, DENG D J, XU L, et al. Strategies for sustainable production of hydrogen peroxide via oxygen reduction reaction: From catalyst design to device setup[J]. Nano-Micro Letters, 2023, 15: 122.

[67] ZHANG M, ZHANG K, AI X, et al. Theory-guided electrocatalyst engineering: From mechanism analysis to structural design[J]. Chinese Journal of Catalysis, 2022, 43(12): 2987-3018.

[68] MICHEL C. Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis?[J]. Catalysis Today, 2013, 218: 162-171.

[69] BALANDIN A A. Modern state of the multiplet theor of heterogeneous catalysis[J]. Advances in Catalysis, 1969, 19: 1-210.

[70] CHEN H, ZHANG B, LIANG X, et al. Light alloying element-regulated noble metal catalysts for energy-related applications[J]. Chinese Journal of Catalysis, 2022, 43(3): 611-635.

[71] KIBSGAARD J, CHORKENDORFF I. Considerations for the scaling-up of water splitting catalysts[J]. Nature Energy, 2019, 4(6): 430-433.

[72] SHE L, ZHAO G, MA T, et al. On the durability of iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment[J]. Advanced Functional Materials, 2022, 32(5): 2108465.

[73] LI Z, CHEN Y, JI S, et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy[J]. Nature Chemistry, 2020, 12(8): 764-772.

[74] LI C J, SHAN G C, GUO C X, et al. Design strategies of Pd-based electrocatalysts for efficient oxygen reduction[J]. Rare Metals, 2023, 42(6): 1778-1799.

[75] LEOW W R, LUM Y, OZDEN A, et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density[J]. Science, 2020, 368: 1228-1233.

[76] NABIL S K, MUZIBUR RAGHUMAN M A, KANNIMUTHU K, et al. Acid–base chemistry and the economic implication of electrocatalytic carboxylate production in alkaline electrolytes[J]. Nature Catalysis, 2024, 7(3): 330-337.

[77] LUO Q, CHEN Q, WANG Y, et al. Facile, general and environmental-friendly fabrication of O/N-codoped porous carbon as a universal matrix for efficient hydrogen evolution electrocatalysts[J]. Chemical Engineering Journal, 2021, 420: 130483.

[78] SHI Z, LI J, WANG Y, et al. Customized reaction route for ruthenium oxide towards stabilized water oxidation in high-performance PEM electrolyzers[J]. Nature Communications, 2023, 14(1): 843.

[79] ZHAO C X, LIU J N, WANG J, et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chemical Society Reviews, 2021, 50(13): 7745-7778.

[80] WANG Y, CUI X, ZHANG J, et al. Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications[J]. Progress in Materials Science, 2022, 128: 100964.

[81] LIU X, LI B Q, NI B, et al. A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts[J]. Journal of Energy Chemistry, 2022, 64: 263-275.

[82] ZHI Q J, JIANG R, YANG X Y, et al. Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H2O2 electroproduction[J]. Nature Communications, 2024, 15(1): 678.

[83] HE H, LIU S, LIU Y, et al. Review and perspectives on carbon-based electrocatalysts for the production of H2O2 via two-electron oxygen reduction[J]. Green Chemistry, 2023, 25(23): 9501-9542.

[84] DE LA TORRE G, CLAESSENS C G, TORRES T. Phthalocyanines: old dyes, new materials. Putting color in nanotechnology[J]. Chemical Communications, 2007, (20): 2000-2015.

[85] ZAGAL J H, GRIVEAU S, SILVA J F, et al. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions[J]. Coordination Chemistry Reviews, 2010, 254(23): 2755-2791.

[86] GOUNDEN D, NOMBONA N, ZYL W E V. Recent advances in phthalocyanines for chemical sensor, non-linear optics (NLO) and energy storage applications[J]. Coordination Chemistry Reviews, 2020, 420: 213359.

[87] WU Y S, LIANG Y Y, WANG H L. Heterogeneous molecular catalysts of metal phthalocyanines for electrochemical CO2 reduction reactions[J]. Accounts of Chemical Research, 2021, 54(16): 3149-3159.

[88] WU Y S, JIANG Z, LU X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst[J]. Nature, 2019, 575: 639-642.

[89] WANG Z X, QIAN J, CAO P C, et al. Identification of synergies in Fe, Co-coordinated polyphthalocyanines scaffolds for electrochemical CO2 reduction reaction[J]. 2024, 24(10): 3249-3256.

[90] SAVÉANT J M. Molecular catalysis of electrochemical reactions. Mechanistic Aspects[J]. Chemical Reviews, 2008, 108(7): 2348-2378.

[91] FRANCKE R, SCHILLE B, ROEMELT M. Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts[J]. Chemical Reviews, 2018, 118(9): 4631-4701.

[92] ZHANG M D, SI D H, YI J D, et al. Conductive phthalocyanine-based metal-organic framework as a highly efficient electrocatalyst for carbon dioxide reduction reaction[J]. Science China Chemistry, 2021, 64(8): 1332-1339.

[93] ZHANG Z, WANG W, WANG X, et al. Ladder-type π-conjugated metallophthalocyanine covalent organic frameworks with boosted oxygen reduction reaction activity and durability for zinc-air batteries[J]. Chemical Engineering Journal, 2022, 435: 133872.

[94] YUE Y, CAI P, XU K, et al. Stable bimetallic polyphthalocyanine covalent organic frameworks as superior electrocatalysts[J]. Journal of the American Chemical Society, 2021, 143(43): 18052-18060.

[95] HUANG S, CHEN K, LI T T. Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis[J]. Coordination Chemistry Reviews, 2022, 464: 214563.

[96] LIU Y, FAN Y S, LIU Z M. Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells[J]. Chemical Engineering Journal, 2019, 361: 416-427.

[97] JIANG Y, XIE Y, JIN X, et al. Highly efficient iron phthalocyanine based porous carbon electrocatalysts for the oxygen reduction reaction[J]. RSC Advances, 2016, 6(82): 78737-78742.

[98] ZHANG R, LI C, CUI H, et al. Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells[J]. Nature Communications, 2023, 14(1): 8036.

[99] ZHANG X, WANG Y, GU M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[J]. Nature Energy, 2020, 5(9): 684-692.

[100] NAM D H, LUNA P D, ROSAS-HERNÁNDEZ A, et al. Molecular enhancement of heterogeneous CO2 reduction[J]. Nature Materials, 2020, 19(3): 266-276.

[101] GU T T, ATTATSI I K, ZHU W H, et al. Enhanced electrocatalytic hydrogen evolutions of Co(II) phthalocyanine through axially coordinated pyridine-pyrene[J]. Inorganica Chimica Acta, 2022, 530: 120696.

[102] KIM Y, KIM D, LEE J, et al. Tuning the electrochemical properties of polymeric cobalt phthalocyanines for efficient water splitting[J]. Advanced Functional Materials, 2021, 31(41): 2103290.

[103] KOU Z, LIU Y, CUI W, et al. Electronic structure optimization of metal–phthalocyanine via confining atomic Ru for all-pH hydrogen evolution[J]. Energy & Environmental Science, 2024, 17(4): 1540-1548.

[104] YI J D, SI D H, XIE R, et al. Conductive two-dimensional phthalocyanine-based metal–organic framework nanosheets for efficient electroreduction of CO2[J]. Angewandte Chemie International Edition, 2021, 60(31): 17108-17114.

[105] CHEN S Y, LI X Q, KAO C W, et al. Unveiling the proton-feeding effect in sulfur-doped Fe−N−C single-atom catalyst for enhanced CO2 electroreduction[J]. Angewandte Chemie International Edition, 2022, 61(32): e202206233.

[106] ZHOU S, ZHANG L J, ZHU L, et al. Amphiphilic cobalt phthalocyanine boosts carbon dioxide reduction[J]. Advanced Materials, 2023, 35(41): 2300923.

[107] CHEN J, ZOU K, DING P, et al. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li–CO2 batteries[J]. Advanced Materials, 2019, 31(2): 1805484.

[108] XU Y, JIANG C, GONG H, et al. Single atom site conjugated copper polyphthalocyanine assisted carbon nanotubes as cathode for reversible Li-CO2 batteries[J]. Nano Research, 2022, 15(5): 4100-4107.

[109] WANG L, WANG J, GAO X, et al. Periodic one-dimensional single-atom arrays[J]. Journal of the American Chemical Society, 2022, 144(35): 15999-16005.

[110] LIANG Z, GUO H, ZHOU G, et al. Metal–organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2021, 60(15): 8472-8476.

[111] ZHU S, DING L, ZHANG X, et al. Biaxially-strained phthalocyanine at polyoxometalate@carbon nanotube heterostructure boosts oxygen reduction catalysis[J]. Angewandte Chemie International Edition, 2023, 62(42): e202309545.

[112] VON-HIPPEL A. Molecular Engineering[J]. Science, 1956, 123(3191): 315-317.

[113] TANG Y Q, GUO G L, YU J H, et al. Molecular Engineering[J]. Chemistry, 2011, 74(11): 970-982.

[114] YU J H, QIU S R, XU R R. Molecular engineering of porous crystalline materials[J]. Chemistry, 2011, 74(11): 983-988.

[115] YANG Z W, CHEN J M, QIU L Q, et al. Molecular engineering of metal complexes for electrocatalytic carbon dioxide reduction: From adjustment of intrinsic activity to molecular immobilization[J]. Angewandte Chemie International Edition, 2022, 61(44): e202205301.

[116] ZHANG J C, DING J, LIU Y H, et al. Molecular tuning for electrochemical CO2 reduction[J]. Joule, 2023, 7(8):1700-1744.

[117] ZHANG X, WU Z, ZHANG X, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nature Communications, 2017, 8(1): 14675.

[118] ZHAO K M, LIU S Q, LI Y Y, et al. Insight into the mechanism of axial ligands regulating the catalytic activity of Fe–N4 sites for oxygen reduction reaction[J]. Advanced Energy Materials, 2022, 12(11): 2103588.

[119] CHEN S, YE C, WANG Z, et al. Selective CO2 reduction to ethylene mediated by adaptive small-molecule engineering of copper-based electrocatalysts[J]. Angewandte Chemie International Edition, 2023, 62(50): e202315621.

[120] DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360: 783-787.

[121] LIU Z Z, LV X M, KONG S Y, et al. Interfacial water tuning by intermolecular spacing for stable CO2 Electroreduction to C2+ Products[J]. Angewandte Chemie International Edition, 2023, 62(43): e202309319.

[122] LI F, THEVENON A, ROSAS-HERNÁNDEZ A, et al. Molecular tuning of CO2-to-ethylene conversion[J]. Nature, 2020, 577: 509-513.

[123] LV B, LI X, GUO K, et al. Controlling oxygen reduction selectivity through steric effects: Electrocatalytic two-electron and four-electron oxygen reduction with cobalt porphyrin atropisomers[J]. Angewandte Chemie International Edition, 2021, 60(23): 12742-12746.

[124] DENG T, JIA S Q, CHEN C J, et al. Polymer modification strategy to modulate reaction microenvironment for enhanced CO2 electroreduction to ethylene[J]. Angewandte Chemie International Edition, 2024, 63(2): e202313796.

[125] WANG Y, WANG M Y, ZHANG Z S, et al. Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts[J]. ACS Catalysis, 2019, 9(7): 6252-6261.

[126] LIN Z C, JIANG Z, YUAN Y B, et al. Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction[J]. Chinese Journal of Catalysis, 2022, 43(1): 104-109.

[127] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.

[128] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.

[129] PERDEW J P, ERNZERHOF M, BURKE K. Rationale for mixing exact exchange with density functional approximations[J]. The Journal of Chemical Physics, 1996, 105(22): 9982-9985.

[130] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.

[131] GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. Journal of Chemical Physics, 2010, 132(15): 154104.

[132] NØRSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17886-17892.

[133] VANDE VONDELE J, Krack M, Mohamed F, et al. Quickstep: Fast and accurate density functional calculations using a mixed gaussian and plane waves approach[J]. Computer Physics Communications, 2005, 167(2): 103–128.

[134] VANDE VONDELE J, HUTTER J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases[J]. Journal of Chemical Physics, 2007, 127(11): 114105.

[135] LIPPERT G, HUTTER J, PARRINELLO M. A hybrid gaussian and plane wave density functional scheme[J]. Molecular Physics, 1997, 92(3): 477–488.

[136] ISHII A, YAMAMOTO M, ASANO H, et al. DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nanotube functionalization[J]. Journal of Physics: Conference Series, 2008, 100: 52087.

[137] UMADEVI D, SASTRY G N. Quantum mechanical study of physisorption of nucleobases on carbon materials: Graphene versus carbon[J]. Journal of Chemical Letters, 2011, 2(13): 1572–1576.

[138] HU H, WANG X, ATTFIELD J P, et al. Metal nitrides for seawater electrolysis[J]. Chemical Society Reviews, 2024, 53: 163-203

[139] YANG H, DRIESS M, MENEZES P W. Self-supported electrocatalysts for practical water electrolysis[J]. Advanced Energy Materials. 2021, 11(39): 2102074.

[140] YAN D, MEBRAHTU C, WANG S, et al. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output[J]. Angewandte Chemie International Edition, 2023, 62(16): e202214333.

[141] CHENG R, MIN Y, LI H, et al. Electronic structure regulation in the design of low-cost efficient electrocatalysts: From theory to applications[J]. Nano Energy, 2023, 115: 108718.

[142] LI W, ZHAO L, JIANG X, et al. Confinement engineering of electrocatalyst surfaces and interfaces[J]. Advanced Functional Materials, 2022, 32(46): 2207727.

[143] WU H, HUANG Q, SHI Y, et al. Electrocatalytic water splitting: Mechanism and electrocatalyst design[J]. Nano Research, 2023, 16(7): 9142–9157.

[144] LI C, KIM S H, LIM H Y, et al. Self‐accommodation induced electronic metal–support interaction on ruthenium site for alkaline hydrogen evolution reaction[J]. Advanced Materials, 2023, 35: 2301369.

[145] GONG F, LIU Y, ZHAO Y, et al. Universal sub‐nanoreactor strategy for synthesis of yolk‐shell MoS2 supported single atom electrocatalysts toward robust hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2023, 62: e202308091.

[146] ZHANG F, LIU Y, YU F, et al. Engineering multilevel collaborative catalytic interfaces with multifunctional iron sites enabling high-performance real seawater splitting[J]. ACS Nano, 2023, 17(2): 1681-1692.

[147] BEYENE B B, YIBELTAL A W, HUNG C H. Highly efficient electrocatalytic hydrogen evolution from neutral aqueous solution by water soluble copper (II) porphyrin[J]. Inorganica Chimica Acta, 2020, 513: 119929.

[148] PEGIS M L, WISE C F, MARTIN D J, et al. Oxygen reduction by homogeneous molecular catalysts and electrocatalysts[J]. Chemical Reviews, 2018, 118(5): 2340-2391.

[149] ZHANG W, LAI W, CAO R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems[J]. Chemical Reviews, 2017, 117(4): 3717-3797.

[150] BAGLIA R A, ZARAGOZA J P T, GOLDBERG D P. Biomimetic reactivity of oxygen-derived manganese and iron porphyrinoid complexes[J]. Chemical Reviews, 2017, 117(21): 13320-13352.

[151] ANDREDIS E S, JACQUES P A, TRAN P D, et al. Molecular engineering of a cobalt-based electrocatalytic nanomaterial for H2 evolution under fully aqueous conditions[J]. Nature Chemistry, 2013, 5(1): 48-53

[152] LI X, LEI H, LIU J, et al. Carbon nanotubes with cobalt corroles for hydrogen and oxygen evolution in pH 0–14 solutions[J]. Angewandte Chemie International Edition, 2018, 57(46): 15070-15075.

[153] MICHERONI D, LAN G X, LIN W B, et al. Efficient electrocatalytic proton reduction with carbon nanotube-supported metal–organic frameworks[J]. Journal of the American Chemistry Society, 2018, 140(46): 15591-15595.

[154] YU Q M, ZHANG Z Y, LIU H M, et al. Why do platinum catalysts show diverse electrocatalytic performance[J]. Fundamental Research, 2023, 3(5): 804-808.

[155] WAN C Z, ZHANG Z S, DONG J C, et al. Amorphous nickel hydroxide shell tailors local chemical environment on platinum surface for alkaline hydrogen evolution reaction[J]. Nature Materials, 2023, 22(8): 1022-1029.

[156] LV F, SUN M Z, HU Y P, et al. Near-unity electrochemical conversion of nitrate to ammonia on crystalline nickel porphyrin-based covalent organic frameworks[J]. Energy Environmental Science, 2023, 16(1): 201–209.

[157] FANG S, ZHU X R, LIU X K, et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction[J]. Nature Communication, 2020, 11(1): 1029.

[158] SUN T T, ZHAO S, CHEN W X, et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst[J]. Proceedings of the National Academy of Science, 2018, 115(50): 12692-12697.

[159] LIANG H W, BRÜLLER S, DONG R H, et al. Molecular metal-Nx centers in porous carbon for electrocatalytic hydrogen evolution[J]. Nature Communication, 2015, 6: 7992.

[160] FEI H L, DONG J C, ARELLANO-JIMÉNEZ M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communication, 2015, 6: 8668.

[161] LIU R, GONG Z C, LIU J B, et al. Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation[J]. Advanced Materials, 2021, 33(41): 2103533.

[162] ZHANG Y Y, CHEN S T, ZHANG Y X, et al. Hydrogen‐bond regulation of the microenvironment of Ni (II)‐porphyrin bifunctional electrocatalysts for efficient overall water splitting[J]. Advanced Materials, 2023, 35(19): 2210727.

[163] WANG A J, LI C, ZHANG J, et al. Graphene-oxide-supported covalent organic polymers based on zinc phthalocyanine for efficient optical limiting and hydrogen evolution[J]. Journal of Colloid and Interface Science, 2019, 556: 159-171.

[164] XU G L, LEI H T, ZHOU G J, et al. Boosting hydrogen evolution by using covalent frameworks of fluorinated cobalt porphyrins supported on carbon nanotubes[J]. Chemistry Communication, 2019, 55(84): 12647-12650.

[165] SHE X J, ZHAI L L, WANG Y F, et al. Pure-water-fed, electrocatalytic CO2 reduction to ethylene beyond 1,000 h stability at 10 A[J]. Nature Energy, 2024, 9: 81-91.

[166] CHEN C, LI J Z, TAN X, et al. Harnessing single-atom catalysts for CO2 electroreduction: a review of recent advances[J]. Energy & Environmental Science Catalysis, 2023, 2: 71-93.

[167] JI Y L, GUAN A X, ZHENG G F, et al. Copper-based catalysts for electrochemical carbon monoxide reduction[J]. Cell Reports Physical Science, 2022, 3(10): 101072.

[168] ZHI X, VASILEFF A, ZHENG Y, et al. Role of oxygen-bound reaction intermediates in selective electrochemical CO2 reduction[J]. Energy & Environmental Science, 2021, 14: 3912-3930.

[169] WANG Q, WEI H H, LIU P, et al. Recent advances in copper-based catalysts for electrocatalytic CO2 reduction toward multi-carbon products[J]. Nano Research Energy, 2024, 3: 9120112.

[170] LIU H M, YAN T, TAN S D, et al. Observation on microenvironment changes of dynamic catalysts in acidic CO2 reduction[J]. Journal of the American Chemical Society, 2024, 146(8): 5333-5342.

[171] WANG Y, ZHANG J R, ZHAO J Y, et al. Strong hydrogen-bonded interfacial water inhibiting hydrogen evolution kinetics to promote electrochemical CO2 reduction to C2+[J]. ACS Catalysis, 2024, 14(5): 3457-3465.

[172] YANG X Z, DING H W, LI S N, et al. Cation-induced interfacial hydrophobic microenvironment promotes the C–C coupling in electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2024, 146(8): 5532-5542.

[173] SU J J, ZHANG J J, CHEN J C, et al. Building a stable cationic molecule/electrode interface for highly efficient and durable CO2 reduction at an industrially relevant current[J]. Energy & Environmental Science, 2021, 14(1): 483-492.

[174] CHEN K J, CAO M Q, LIN Y Y, et al. Ligand engineering in nickel phthalocyanine to boost the electrocatalytic reduction of CO2[J]. Advanced Functional Materials, 2022, 32(10): 2111322.

[175] SUN K A, YU K, FANG J J, et al. Nature-inspired design of molybdenum–selenium dual-single-atom electrocatalysts for CO2 reduction[J]. Advanced Materials, 2022, 34(44): 2206478.

[176] WANG X Y, WANG Y, SANG X H, et al. Dynamic activation of adsorbed intermediates via axial traction for the promoted electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2021, 60(8): 4192-4198.

[177] FU H Q, LIU J X, BEDFORD N M, et al. Synergistic Cr2O3@Ag heterostructure enhanced electrocatalytic CO2 reduction to CO[J]. Advanced Materials, 2022, 34(29): 2202854.

[178] HAO Y A, HU F, ZHU S Q, et al. MXene-regulated metal-oxide interfaces with modified intermediate configurations realizing nearly 100% CO2 electrocatalytic conversion[J]. Angewandte Chemie International Edition, 2023, 62(35): e202304179.

[179] ZHANG Z, WEN G B, LUO D, et al. “Two ships in a bottle” design for Zn–Ag–O catalyst enabling selective and long-lasting CO2 electroreduction[J]. Journal of the American Chemical Society, 2021, 143(18): 6855-6864.

[180] WANG T F, WANG J H, LU C B, et al. Single-atom anchored curved carbon surface for efficient CO2 electro-reduction with nearly 100% CO selectivity and industrially-relevant current density[J]. Advanced Materials, 2023, 35(35): 2205553.

[181] SENFTLE T P, CARTER E A. The holy grail: Chemistry enabling an economically viable CO2 capture, utilization, and storage strategy[J]. Accounts of Chemical Research, 2017, 50(3): 472-475.

[182] MCDONALD T M, HERM Z R, BLOCH E D, et al. Carbon dioxide capture in metal–organic frameworks[J]. Chemical Reviews, 2012, 243: 724-781.

[183] DUAN X C, XU J T, WEI Z X, et al. Metal-free carbon materials for CO2 electrochemical reduction[J]. Advanced Materials, 2017, 29(41): 1701784.

[184] LIU B, SUN Y L, LIU L Y, et al. Recent advances in understanding Li–CO2 electrochemistry[J]. Energy & Environmental Science, 2019, 12(3): 887-922.

[185] YANG C, GUO K K, YUAN D W, et al. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery[J]. Journal of the American Chemical Society, 2020, 142(15): 6983-6990.

[186] QIAO Y, YI J, WU S C. Li-CO2 electrochemistry: A new strategy for CO2 fixation and energy storage[J]. Joule, 2017, 1(2): 359-370.

[187] ZHOU J W, LI X L, YANG C, et al. A quasi-solid-state flexible fiber-shaped Li–CO2 battery with low overpotential and high energy efficiency[J]. Advanced Materials, 2019, 31(3): 1804439.

[188] LI X, WANG H, CHEN Z X, et al. Covalent-organic-framework-based Li–CO2 batteries[J]. Advanced Materials, 2019, 31(48): 1905879.

[189] CHOU S L, DOU S X. Boosting up the Li-CO2 battery by the ultrathin RuRh nanosheet[J]. Matter, 2020, 2(6): 1356-1358.

[190] XING Y, YANG Y, LI D H, et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium–CO2 batteries[J]. Advanced Materials, 2019, 30(51): 1803124.

[191] ZHANG Z, YANG C, WU S S, et al. Exploiting synergistic effect by integrating ruthenium–copper nanoparticles highly Co-dispersed on graphene as efficient air cathodes for Li–CO2 batteries[J]. Advanced Energy Materials, 2019, 9(8): 1802805.

[192] JIAN T Z, MA W Q, HOU J G, et al. From Ru to RuAl intermetallic/Ru heterojunction: Enabling high reversibility of the CO2 redox reaction in Li–CO2 battery based on lowered interface thermodynamic energy barrier[J]. Nano Energy, 2023, 118: 108998.

[193] ZHANG Z, WANG X G, ZHANG X, et al. Verifying the rechargeability of Li-CO2 batteries on working cathodes of Ni nanoparticles highly dispersed on N-doped graphene[J]. Advanced Science, 2018, 5(2): 1700567.

[194] LI S W, DONG Y, ZHOU J W, et al. Carbon dioxide in the cage: manganese metal–organic frameworks for high performance CO2 electrodes in Li–CO2 batteries[J]. Energy & Environmental Science, 2018, 11(5): 1318-1325.

[195] LIU Y Q, ZHAO S Y, WANG D S, et al. Toward an understanding of the reversible Li-CO2 batteries over metal–N4–functionalized graphene electrocatalysts[J]. ACS Nano, 2022, 16(1): 1523-1532.

[196] CHEN J M, ZOU K Y, DING P, et al. Conjugated cobalt polyphthalocyanine as the elastic and reprocessable catalyst for flexible Li–CO2 batteries[J]. Advanced Materials, 2019, 31(2): 1805484.

[197] LI X L, ZHANG J X, QI G C, et al. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries[J]. Energy Storage Materials, 2021, 35: 148-156.

[198] HU C, GONG L, XIAO Y, et al. High-performance, long-life, rechargeable Li-CO2 batteries based on a 3D holey graphene cathode implanted with single iron atoms[J]. Advanced Materials, 2020, 32(16): 1907436.

[199] THOKA S, CHEN C J, JENA A, et al. Spinel zinc cobalt oxide (ZnCo2O4) porous nanorods as a cathode material for highly durable Li–CO2 batteries[J], ACS Applied Materials Interfaces, 2020, 12(15): 17353-17363.

[200] ZHANG X, ZHANG Q, ZHANG Z, et al. Rechargeable Li–CO2 batteries with carbon nanotubes as air cathodes[J]. Chemical Communications, 2015, 51(78): 14636-14639.

[201] LI S W, DONG Y, ZHOU J W, et al. Carbon dioxide in the cage: Manganese metal-organic frameworks for high performance CO2 electrodes in Li–CO2 batteries[J]. Energy & Environmental Science, 2018, 11(5): 1318-1325.

[202] ZHANG Z, ZHANG Z, LIU P, et al. Identification of cathode stability in Li–CO2 batteries with Cu nanoparticles highly dispersed on N-doped Graphene[J], Journal of Materials Chemistry A, 2018, 6(7): 3218-3223.

[203] ZHANG P, CHEN H C, ZHU H Y, et al. Inter-site structural heterogeneity induction of single atom Fe catalysts for robust oxygen reduction[J]. Nature Communication, 2024, 15(1): 2062.

[204] CHAI L L, SONG J L, KUMAR A, et al. Bimetallic-MOF derived carbon with single Pt anchored C4 atomic group constructing super fuel cell with ultrahigh power density and self-change ability[J]. Advanced Materials, 2024, 36(1): 2308989.

[205] DENG Z P, GONG Z, GONG M X, et al. Multiscale regulation of ordered PtCu intermetallic electrocatalyst for highly durable oxygen reduction reaction[J]. Nano Letters, 2024, 24(13): 3994-4001.

[206] NIU H T, XIA C F, HUANG L, et al. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis[J]. Chinese Journal of Catalysis, 2022, 43(6): 1459-1472.

[207] JASINSKI R. A new fuel cell cathode catalyst. Nature, 1964, 201: 1212-1213.

[208] WANG H G, WU Q, CHENG L Q, et al. Porphyrin- and phthalocyanine-based systems for rechargeable batteries[J]. Energy Storage Materials, 2022, 52: 495-513.

[209] WU Y, LIU J, SUN Q H, et al. Molecular catalyst of Fe phthalocyanine loaded into In-based MOF-derived defective carbon nanoflowers for oxygen reduction[J]. Chemical Engineering Journal, 2024, 483: 149243.

[210] HONG Y S, LI L B, HUANG B Y, et al. Molecular control of carbon-based oxygen reduction electrocatalysts through metal macrocyclic complexes functionalization[J]. Advanced Energy Materials, 2021, 11(33): 2100866.

[211] CHEN K J, LIU K, AN P D, et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction[J]. Nature Communications, 2020, 11(1): 4173.

[212] YUAN S, PENG J Y, ZHANG Y R, et al. Tuning the catalytic activity of Fe-phthalocyanine-based catalysts for the oxygen reduction reaction by ligand functionalization[J]. ACS Catalysis, 2022, 12(12): 7278-7287.

[213] WANG Y, ZHOU T P, RUAN S S, et al. Directional manipulation of electron transfer by energy level engineering for efficient cathodic oxygen reduction[J]. Nano Letters, 2022, 22(16): 6622-6630.

[214] YUAN Y B, LI H, JIANG Z, et al. Deciphering the selectivity descriptors of heterogeneous metal phthalocyanine electrocatalysts for hydrogen peroxide production[J]. Chemical Science, 2022, 13: 11260.

[215] LI X Y, WU X S, ZHAO Y, et al. Promoting oxygen reduction reaction by inducing out-of-plane polarization in a metal phthalocyanine catalyst[J]. Advanced Materials, 2023, 35(30): 2302467.

[216] YU X Z, LAI S J, XIN S S, et al. Coupling of iron phthalocyanine at carbon defect site via π-π stacking for enhanced oxygen reduction reaction[J]. Applied Catalysis B-Environmental, 2021, 280: 119437.

[217] SUN C Y, LI Z F, YANG J W, et al. Two-dimensional closely packed amide polyphthalocyanine iron absorbed on Vulcan XC-72 as an efficient electrocatalyst for oxygen reduction reaction[J]. Catalysis Today, 2020, 353: 279-286.

[218] LI J C, MAURYA S, KIM Y S, et al. Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping[J]. ACS Catalysis, 2020, 10(4): 2452-2458.

[219] ZHANG X B, HAN X, JIANG Z, et al. Atomically dispersed hierarchically ordered porous Fe–N–C electrocatalyst for high performance electrocatalytic oxygen reduction in Zn-Air battery[J]. Nano Energy, 2020, 71: 104547.

[220] KUMAR A, SUN K, DUAN X X, et al. Construction of dual-atom Fe via face-to-face assembly of molecular phthalocyanine for superior oxygen reduction reaction[J]. Chemistry of Materials, 2022, 34(12): 5598-5606.

[221] LUO Y J, CHEN Y H, XUE Y L, et al. Electronic structure regulation of iron phthalocyanine induced by anchoring on heteroatom-doping carbon sphere for efficient oxygen reduction reaction and Al–air battery[J]. Small, 2022, 18(2): 2105594.

[222] WU X, CHENG Y, VEDER J P, et al. An efficient bio-inspired oxygen reduction reaction catalyst: MnOx nanosheets incorporated iron phthalocyanine functionalized graphene[J]. Energy & Environmental Materials, 2021, 4(3): 474-480.

[223] WANG Y B, LI K Q, CHENG R Q, et al. Enhanced electronic interaction between iron phthalocyanine and cobalt single atoms promoting oxygen reduction in alkaline and neutral aluminum-air batteries[J]. Chemical Engineering Journal, 2022, 450: 138213.

[224] ZHU Y W, JIANG Y M, LI H J W, et al. Tip-like Fe−N4 sites induced surface microenvironments regulation boosts the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2024, 43(11): e202309370.

[225] LIU H, JIANG L Z, SUN Y Y, et al. Asymmetric N, P-coordinated single-atomic Fe sites with Fe2P nanoclusters/nanoparticles on porous carbon nanosheets for highly efficient oxygen electroreduction[J]. Advanced Energy Materials, 2023, 13(32): 2301223.

[226] ZONG L B, FAN K C, CUI L X, et al. Constructing Fe-N4 sites through anion exchange-mediated transformation of Fe coordination environments in hierarchical carbon support for efficient oxygen reduction[J]. Angewandte Chemie International Edition, 2023, 135(38): e202309784.

[227] KIM M, FIRETEIN K L, FERNANDO J F S, et al. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics[J]. Chemical Science, 2022, 13(36): 10836-10845.

所在学位评定分委会
材料科学与工程
国内图书分类号
TB3
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/804213
专题工学院_材料科学与工程系
推荐引用方式
GB/T 7714
李欢. 金属酞菁基电催化剂的分子工程及应用研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
11930692-李欢-材料科学与工程系(13172KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[李欢]的文章
百度学术
百度学术中相似的文章
[李欢]的文章
必应学术
必应学术中相似的文章
[李欢]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。