题名 | Investigating the Influence of Electrolyte Additives on the Solid Electrolyte Interphase (SEI) Structure Evolution and Formation Mechanism on Different Metal Anodes and Silicon Anodes Using Advanced Microscopy Techniques |
姓名 | |
姓名拼音 | ZHANG Zhen
|
学号 | 12069012
|
学位类型 | 博士
|
学位专业 | 材料科学与工程
|
导师 | |
导师单位 | 材料科学与工程系
|
论文答辩日期 | 2024-07-31
|
论文提交日期 | 2024-08-24
|
学位授予单位 | 香港城市大学
|
学位授予地点 | 香港
|
摘要 | Since their commercialization in the 1990s, lithium-ion batteries (LIBs) have become the predominant energy source for portable electronic devices, electric vehicles, and energy storage systems, renowned for their high energy density, long cycle life, and low self-discharge rate. However, as the demand for high-performance batteries increases, traditional LIBs face significant challenges, including capacity degradation, limited cycle life, and safety concerns. These issues are primarily due to volumetric changes in electrode materials and side reactions of electrolytes during charge and discharge cycles. To address these challenges, this thesis investigates novel anode materials, focusing on silicon anodes and lithium metal anodes.
Silicon anodes, with a theoretical capacity of approximately 4200 mAh/g, offer much higher energy density compared to conventional graphite anodes. However, the volumetric expansion of silicon during lithiation, which can reach up to 300%, leads to structural degradation and instability of the solid electrolyte interphase (SEI) layer, severely impacting the cycle life and stability of the battery. Various strategies have been proposed to mitigate this challenge, including nano-structuring of silicon particles, development of silicon-carbon composites, and optimization of electrolyte additives to improve SEI stability.
Lithium metal anodes, in their body-centered cubic phase (LiBCC), are considered the ultimate anode for rechargeable batteries due to their high specific capacity (3860 mAh/g) and low redox potential (−3.040 V vs. standard hydrogen electrode). The SEI layer plays a critical role in determining the stability of the anode, acting as a self-passivating layer that electronically insulates the electrolyte from the free electrons in the anode while remaining conductive to Li+ cations. This study employs advanced characterization techniques such as cryo-electron microscopy (cryo-EM) and high-resolution transmission electron microscopy (HRTEM) to investigate the instability of lithium carbonate (Li2CO3) in the SEI of lithium metal anodes and the influence of electrolyte additives like ethylene sulfate (DTD) and 13-propanesulfonate (PS) on SEI formation and stability. The research reveals that Li2CO3 is thermodynamically unstable in contact with LiBCC, leading to its decomposition and poor SEI performance. In contrast, sulfur-containing additives show superior performance, forming electronically insulating layers that enhance SEI stability. This thesis also explores the SEI structures formed on different anode surfaces, including silicon, lithium metal, artificial graphite, and hard carbon, in the presence of fluorine-containing electrolyte additives. Using cryo-EM, detailed analyses of SEI composition and morphology highlight the differences in SEI formation mechanisms across various anode materials and the beneficial effects of fluorine-containing additives.
Furthermore, the study examines the impact of different electrolyte additives, such as ethylene sulfite (ES), fluoroethylene carbonate (FEC), and lithium difluorophosphate (LiPO2F2), on the SEI formation on nano-silicon anodes under low discharge voltage conditions. Cryo-TEM analyses demonstrate that these additives significantly improve the structural and chemical stability of the SEI layer, enhancing the cycling performance and longevity of nano-silicon anodes. The research findings suggest that fluorine-containing electrolytes form more stable SEI layers due to the formation of LiF and other stable compounds, which prevent further electrolyte decomposition and improve battery performance. In addition to lithium-ion batteries, this thesis addresses the development of dendrite-free zinc deposition in zinc batteries, which are gaining attention for their high capacity, safety, and cost-effectiveness. The study introduces a novel electrolyte additive, cesium sulfate, which effectively inhibits zinc dendrite growth by forming a self-healing electrostatic shielding layer. This mechanism ensures uniform zinc ion deposition, preventing dendrite formation and enhancing the cycle life and stability of zinc anodes. The research demonstrates that the optimal concentration of cesium sulfate in the electrolyte not only prevents dendrite growth but also mitigates corrosion and passivation of the zinc metal anode, improving the overall electrochemical performance of zinc batteries.
Overall, this work provides valuable insights and practical guidelines for the design and optimization of high-capacity, durable, and safe lithium-ion and zinc batteries. The findings contribute to the development of next-generation batteries with enhanced performance and stability, addressing the growing demand for high-energy-density, reliable energy storage solutions in various applications. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2020
|
学位授予年份 | 2024-08
|
参考文献列表 | 1. Armand, M. & Tarascon, J.M. Building better batteries. Nature 451, 652-657 (2008). 2. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 89, 206-218 (2000). 3. Aurbach, D., Daroux, M.L., Faguy, P.W. & Yeager, E. Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions. Journal of The Electrochemical Society 134, 1611-1620 (1987). 4. Li, M., Lu, J., Chen, Z. & Amine, K. 30 Years of Lithium-Ion Batteries. Advanced Materials 30, 1800561 (2018). 5. McDowell, M.T., Lee, S.W., Nix, W.D. & Cui, Y. 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Advanced Materials 25, 4966-4985 (2013). 6. Obrovac, M.N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid-State Letters 7, A93 (2004). 7. Liu, X.H. & Huang, J.Y. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy & Environmental Science 4, 3844-3860 (2011). 8. Tokranov, A., Sheldon, B.W., Li, C., Minne, S. & Xiao, X. In Situ Atomic Force Microscopy Study of Initial Solid Electrolyte Interphase Formation on Silicon Electrodes for Li-Ion Batteries. ACS Applied Materials & Interfaces 6, 6672-6686 (2014). 9. Peled, E., Golodnitsky, D. & Ardel, G. Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes. Journal of The Electrochemical Society 144, L208-L210 (1997). 10. Peled, E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. Journal of The Electrochemical Society 126, 2047-2051 (1979). 11. Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 55, 6332-6341 (2010). 12. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews 104, 4303-4418 (2004). 13. Adenusi, H., Chass, G.A., Passerini, S., Tian, K.V. & Chen, G. Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook. Advanced Energy Materials 13, 2203307 (2023). 14. Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chemical Reviews 118, 11433-11456 (2018). 15. Markevich, E. et al. Fluoroethylene carbonate as an important component in electrolyte solutions for high-voltage lithium batteries: role of surface chemistry on the cathode. Langmuir 30, 7414-7424 (2014). 16. Liang, Y., Dong, H., Aurbach, D. & Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nature Energy 5, 646-656 (2020). 17. Zhang, N. et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nature Communications 8, 405 (2017). 134 18. Parker, J.F. et al. Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 356, 415-418 (2017). 19. Yang, Z. et al. Electrochemical energy storage for green grid. Chemical Reviews 111, 3577-3613 (2011). 20. Guo, S. et al. Fundamentals and perspectives of electrolyte additives for aqueous zincion batteries. Energy Storage Materials 34, 545-562 (2021). 21. Guo, X. et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Letters 6, 395-403 (2021). 22. An, S.J. et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52-76 (2016). 23. Janek, J. & Zeier, W.G. A solid future for battery development. Nature Energy 1, 16141 (2016). 24. Fanfan Liu, Z.Z., Shufen Ye, Yu Yao, Yan Yu Challenges and Improvement Strategies Progress of Lithium Metal Anode. Acta Phys. -Chim. Sin. 37, 2006021- (2021). 25. Bruce, P.G., Freunberger, S.A., Hardwick, L.J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nature Materials 11, 19-29 (2012). 26. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194-206 (2017). 27. Whittingham, M.S. Lithium Batteries and Cathode Materials. Chemical Reviews 104, 4271-4302 (2004). 28. Brandt, K. Historical development of secondary lithium batteries. Solid State Ionics 69, 173-183 (1994). 29. Wang, D. et al. Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Advanced Science 4, 1600168 (2017). 30. Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 117, 10403-10473 (2017). 31. Sacci, R.L. et al. Nanoscale imaging of fundamental li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett 15, 2011-2018 (2015). 32. Steiger, J. (Karlsruhe, Karlsruher Institut für Technologie (KIT), Diss., 2015, 2015). 33. Ding, F. et al. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society 135, 4450-4456 (2013). 34. Zou, P. et al. Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields. Chemical reviews 121, 5986-6056 (2021). 35. Li, T. et al. Stable anion‐derived solid electrolyte interphase in lithium metal batteries. Angewandte Chemie International Edition 60, 22683-22687 (2021). 36. Eshetu, G.G. et al. Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium–Sulfur Batteries. Angewandte Chemie International Edition 56, 15368-15372 (2017). 37. Fan, X. et al. Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries. Chem 4, 174-185 (2018). 38. Zhang, X.-Q. et al. Electrolyte Structure of Lithium Polysulfides with Anti-Reductive Solvent Shells for Practical Lithium–Sulfur Batteries. Angewandte Chemie International Edition 60, 15503-15509 (2021). 135 39. Xu, K., Lam, Y., Zhang, S.S., Jow, T.R. & Curtis, T.B. Solvation Sheath of Li+ in Nonaqueous Electrolytes and Its Implication of Graphite/Electrolyte Interface Chemistry. The Journal of Physical Chemistry C 111, 7411-7421 (2007). 40. Chen, S. et al. High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule 2, 1548-1558 (2018). 41. Yang, G. et al. LiFSI to improve lithium deposition in carbonate electrolyte. Energy Storage Materials 23, 350-357 (2019). 42. Pham, T.D., Bin Faheem, A. & Lee, K.K. Design of a LiF‐rich solid electrolyte interphase layer through highly concentrated LiFSI–THF electrolyte for stable lithium metal batteries. Small 17, 2103375 (2021). 43. Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 27, 1605989 (2017). 44. Zhang, X.Q. et al. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angew Chem Int Ed Engl 57, 5301-5305 (2018). 45. Zhang, Y. et al. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Letters 14, 6889-6896 (2014). 46. Jagger, B. & Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228-2244 (2023). 47. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nature Energy 6, 987-994 (2021). 48. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358, 506-510 (2017). 49. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nature Energy 4, 796-805 (2019). 50. Han, B. et al. Poor Stability of Li2CO3 in the Solid Electrolyte Interphase of a LithiumMetal Anode Revealed by Cryo-Electron Microscopy. Advanced Materials 33, 2100404 (2021). 51. Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66-70 (2022). 52. Zachman, M.J., Tu, Z., Choudhury, S., Archer, L.A. & Kourkoutis, L.F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345-349 (2018). 53. Choi, J.W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 1, 16013 (2016). 54. He, S. et al. Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications. Energy & Fuels 35, 944-964 (2020). 55. He, X., Han, R., Jiang, P., Chen, Y. & Liu, W. Molecularly engineered conductive polymer binder enables stable lithium storage of Si. Industrial & Engineering Chemistry Research 59, 2680-2688 (2020). 56. Jin, Y., Zhu, B., Lu, Z., Liu, N. & Zhu, J. Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery. Advanced Energy Materials 7, 136 1700715 (2017). 57. Lindgren, F. et al. On the capacity losses seen for optimized nano‐Si composite electrodes in Li‐metal half‐cells. Advanced Energy Materials 9, 1901608 (2019). 58. Duveau, D., Fraisse, B., Cunin, F. & Monconduit, L. Synergistic Effects of Ge and Si on the Performances and Mechanism of the GexSi1–x Electrodes for Li Ion Batteries. Chemistry of Materials 27, 3226-3233 (2015). 59. Stetson, C. et al. Microscopic Observation of Solid Electrolyte Interphase Bilayer Inversion on Silicon Oxide. ACS Energy Letters 5, 3657-3662 (2020). 60. Chen, Z. et al. Emerging organic surface chemistry for Si anodes in lithium‐ion batteries: advances, prospects, and beyond. Advanced Energy Materials 12, 2200924 (2022). 61. Wu, J. et al. Improved electrochemical performance of the Silicon/Graphite-Tin composite anode material by modifying the surface morphology of the Cu current collector. Electrochimica Acta 146, 322-327 (2014). 62. Ababtain, K. et al. Porous graphene current collectors filled with silicon as highperformance lithium battery anode. Materials Research Express 5, 014004 (2018). 63. Kim, K., Ma, H., Park, S. & Choi, N.-S. Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges. ACS Energy Letters 5, 1537-1553 (2020). 64. Qi, W. et al. Improving the rate capability of a SiOx/graphite anode by adding LiNO3. Progress in Natural Science: Materials International 30, 321-327 (2020). 65. Zeng, G., An, Y., Xiong, S. & Feng, J. Nonflammable Fluorinated Carbonate Electrolyte with High Salt-to-Solvent Ratios Enables Stable Silicon-Based Anode for NextGeneration Lithium-Ion Batteries. ACS Applied Materials & Interfaces 11, 23229-23235 (2019). 66. Liu, G. et al. Interfacial enhancement of silicon-based anode by a lactam-type electrolyte additive. Acs Applied Energy Materials 4, 10323-10332 (2021). 67. Huang, Z. et al. Effects of Anion Carriers on Capacitance and Self-Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie International Edition 60, 1011-1021 (2021). 68. Lu, H. et al. Triphenyl borate as an effective film-modification additive for regulating the solid electrolyte interphase formed on graphite and silicon based anode. Materials Today Communications 35, 105619 (2023). 69. Wang, E. et al. Construction of stable SEI film on Si@ C high-loading electrodes by dimethoxydimethylsilane electrolyte additives. Ionics 28, 1625-1634 (2022). 70. Hy, S., Chen, Y.-H., Liu, J.-y., Rick, J. & Hwang, B.-J. In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. Journal of Power Sources 256, 324-328 (2014). 71. Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano letters 17, 7606-7612 (2017). 72. Huang, W. et al. Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy. Matter 1, 1232-1245 (2019). 73. Fang, G., Zhou, J., Pan, A. & Liang, S. Recent advances in aqueous zinc-ion batteries. ACS Energy Letters 3, 2480-2501 (2018). 74. Wu, B., Luo, W., Li, M., Zeng, L. & Mai, L. Achieving better aqueous rechargeable zinc ion 137 batteries with heterostructure electrodes. Nano Research 14, 3174-3187 (2021). 75. Wang, Z. et al. Simultaneously regulating uniform Zn 2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-micro letters 13, 1-11 (2021). 76. Hao, J. et al. An in‐depth study of Zn metal surface chemistry for advanced aqueous Zn‐ion batteries. Advanced Materials 32, 2003021 (2020). 77. Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645-648 (2019). 78. Wan, F. et al. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. 9, 1-11 (2018). 79. Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nature Energy 1, 16039 (2016). 80. Wenchao SHI, Y.L., Bomian ZHANG, Qi LI, Chunhua HAN, Liqiang MAI Research progress and prospect on electrolyte additives for stabilizing the zinc anode interface in aqueous batteries. Energy Storage Science and Technology 12, 1589-1603 (2023). 81. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nature Materials 17, 543-549 (2018). 82. Yuan, L. et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy & Environmental Science 14, 5669-5689 (2021). 83. Liu, C., Xie, X., Lu, B., Zhou, J. & Liang, S. Electrolyte strategies toward better zinc-ion batteries. ACS Energy Letters 6, 1015-1033 (2021). 84. Huang, C. et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Advanced materials 33, 2100445 (2021). 85. Cao, L. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nature nanotechnology 16, 902-910 (2021). 86. Hao, J. et al. Boosting zinc electrode reversibility in aqueous electrolytes by using low‐cost antisolvents. Angewandte Chemie International Edition 60, 7366-7375 (2021). 87. Qiu, Q., Chi, X., Huang, J., Du, Y. & Liu, Y. Highly stable plating/stripping behavior of zinc metal anodes in aqueous zinc batteries regulated by quaternary ammonium cationic salts. ChemElectroChem 8, 858-865 (2021). 88. Zeng, X. et al. In-situ constructing polyacrylamide interphase enables dendrite-free zinc anode in aqueous batteries. Electrochimica Acta 378, 138106 (2021). 89. Periyapperuma, K., Pozo-Gonzalo, C., MacFarlane, D.R., Forsyth, M. & Howlett, P.C. High Zn Concentration Pyrrolidinium-Dicyanamide-Based Ionic Liquid Electrolytes for Zn2+/Zn0 Electrochemistry in a Flow Environment. ACS Applied Energy Materials 1, 4580-4590 (2018). 90. Li, Y., Li, Y. & Cui, Y. Catalyst: How Cryo-EM Shapes the Development of NextGeneration Batteries. Chem 4, 2250-2252 (2018). 91. Li, Y., Huang, W., Li, Y., Chiu, W. & Cui, Y. Opportunities for Cryogenic Electron Microscopy in Materials Science and Nanoscience. ACS Nano 14, 9263-9276 (2020). 92. Chen, Y. et al. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature 578, 251-255 (2020). 93. Goodenough, J.B. & Kim, Y. Challenges for Rechargeable Li Batteries. Chemistry of 138 Materials 22, 587-603 (2010). 94. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513-537 (2014). 95. Tikekar, M.D., Choudhury, S., Tu, Z. & Archer, L.A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016). 96. Cheng, X.B., Zhang, R., Zhao, C.Z. & Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem Rev 117, 10403-10473 (2017). 97. Bruce, P.G., Freunberger, S.A., Hardwick, L.J. & Tarascon, J.M. Li-O2 and Li-S batteries with high energy storage. Nat Mater 11, 19-29 (2011). 98. Yang, C., Fu, K., Zhang, Y., Hitz, E. & Hu, L. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. Advanced materials 29, 1701169 (2017). 99. Philippe, B. et al. Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study. Journal of the American Chemical Society 135, 9829-9842 (2013). 100. Pinson, M.B. & Bazant, M.Z. Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction. Journal of the Electrochemical Society 160, A243-A250 (2012). 101. Younesi, R., Veith, G.M., Johansson, P., Edström, K. & Vegge, T. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy & Environmental Science 8, 1905-1922 (2015). 102. Aurbach, D., Ein‐Ely, Y. & Zaban, A. The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions. Journal of The Electrochemical Society 141, L1-L3 (1994). 103. Liu, T. et al. In situ quantification of interphasial chemistry in Li-ion battery. Nature Nanotechnology 14, 50-56 (2019). 104. Leung, K., Soto, F., Hankins, K., Balbuena, P.B. & Harrison, K.L. Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces. The Journal of Physical Chemistry C 120, 6302-6313 (2016). 105. Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical reviews 104, 4303-4418 (2004). 106. Smith, A.J., Burns, J.C., Zhao, X., Xiong, D. & Dahn, J.R. A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells. Journal of The Electrochemical Society 158, A447 (2011). 107. Philippe, B. et al. Role of the LiPF6 Salt for the Long-Term Stability of Silicon Electrodes in Li-Ion Batteries – A Photoelectron Spectroscopy Study. Chem. Mater. 25, 394-404 (2013). 108. Philippe, B. et al. Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy. Chem. Mater. 24, 1107-1115 (2012). 109. Wang, X. et al. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Lett. 17, 7606-7612 (2017). 110. Alvarado, J. et al. Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy & Environmental Science 12, 780-794 (2019). 111. Yang, Y. et al. Liquefied gas electrolytes for wide-temperature lithium metal batteries. 139 Energy & Environmental Science 13, 2209-2219 (2020). 112. Xu, Y. et al. Atomic to Nanoscale Origin of Vinylene Carbonate Enhanced Cycling Stability of Lithium Metal Anode Revealed by Cryo-Transmission Electron Microscopy. Nano Lett. 20, 418-425 (2020). 113. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013). 114. Wang, X. et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. (2020). 115. Bi, Y. et al. Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Adv. 6, 19233-19237 (2016). 116. Wang, J. et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nature Energy 4, 664-670 (2019). 117. Guo, R. & Gallant, B.M. Li2O Solid Electrolyte Interphase: Probing Transport Properties at the Chemical Potential of Lithium. Chem. Mater. 32, 5525-5533 (2020). 118. Zhang, Q. et al. Synergetic Effects of Inorganic Components in Solid Electrolyte Interphase on High Cycle Efficiency of Lithium Ion Batteries. Nano Lett. 16, 2011-2016 (2016). 119. Amine, K., Kanno, R. & Tzeng, Y. Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bulletin 39, 395-401 (2014). 120. Etacheri, V., Marom, R., Elazari, R., Salitra, G. & Aurbach, D. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 4, 3243-3262 (2011). 121. Whittingham, M.S. Ultimate Limits to Intercalation Reactions for Lithium Batteries. Chemical Reviews 114, 11414-11443 (2014). 122. Jin, Y. et al. Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy. Journal of the American Chemical Society 140, 9854-9867 (2018). 123. Shkrob, I.A., Wishart, J.F. & Abraham, D.P. What Makes Fluoroethylene Carbonate Different? The Journal of Physical Chemistry C 119, 14954-14964 (2015). 124. Lu, P. & Harris, S.J. Lithium transport within the solid electrolyte interphase. Electrochemistry Communications 13, 1035-1037 (2011). 125. Xu, Y., He, Y., Wu, H., Xu, W. & Wang, C. Atomic Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases Revealed by Cryo–electron Microscopy. Microscopy and Microanalysis 25, 2220-2221 (2019). 126. Tan, J., Matz, J., Dong, P., Shen, J. & Ye, M. A Growing Appreciation for the Role of LiF in the Solid Electrolyte Interphase. Advanced Energy Materials 11, 2100046 (2021). 127. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable highperformance microsized alloy anodes for batteries. Nature Energy 5, 386-397 (2020). 128. Eshetu, G.G. et al. Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion’s Chemistry-Induced Anomalous Synergistic Effect. Journal of the American Chemical Society 140, 9921-9933 (2018). 129. Han, B. et al. Cryo-Electron Tomography of Highly Deformable and Adherent SolidElectrolyte Interphase Exoskeleton in Li-Metal Batteries with Ether-Based Electrolyte. Advanced Materials 34, 2108252 (2022). 140 130. Zhang, Q. et al. Enabling Atomic-Scale Imaging of Sensitive Potassium Metal and Related Solid Electrolyte Interphases Using Ultralow-Dose Cryo-TEM. Advanced Materials 33, 2102666 (2021). 131. Han, B. et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy. Matter 4, 3741-3752 (2021). 132. Dong, L. et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Materials 13, 96-102 (2018). 133. Kundu, D., Adams, B.D., Duffort, V., Vajargah, S.H. & Nazar, L.F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nature Energy 1, 16119 (2016). 134. Zhang, N. et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. 8, 1-9 (2017). 135. Shi, J. et al. A new flexible zinc-ion capacitor based on δ-MnO2@ Carbon cloth batterytype cathode and MXene@ Cotton cloth capacitor-type anode. 446, 227345 (2020). 136. Yang, W. et al. Hydrated Eutectic Electrolytes with Ligand-Oriented Solvation Shells for Long-Cycling Zinc-Organic Batteries. Joule 4, 1557-1574 (2020). 137. Owusu, K. et al. Introducing Na2SO4 in aqueous ZnSO4 electrolyte realizes superior electrochemical performance in zinc-ion hybrid capacitor. 18, 100529 (2020). 138. Kundu, D. et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. 11, 881-892 (2018). 139. Wang, Z. et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes. 3, 1289-1300 (2019). 140. Hao, J. et al. Toward High ‐ Performance Hybrid Zn ‐ Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive. 29, 1903605 (2019). |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/804577 |
专题 | 工学院_材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Zhang Z. Investigating the Influence of Electrolyte Additives on the Solid Electrolyte Interphase (SEI) Structure Evolution and Formation Mechanism on Different Metal Anodes and Silicon Anodes Using Advanced Microscopy Techniques[D]. 香港. 香港城市大学,2024.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
12069012-张震-材料科学与工程系(6823KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[张震]的文章 |
百度学术 |
百度学术中相似的文章 |
[张震]的文章 |
必应学术 |
必应学术中相似的文章 |
[张震]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论