中文版 | English
题名

Dual blind-spot network for self-supervised denoising in OCT images

作者
通讯作者Yu, Xiaojun
发表日期
2024-11-01
DOI
发表期刊
ISSN
1746-8094
EISSN
1746-8108
卷号97
摘要
The blind-spot network and its variants have shown promising results in the field of self-supervised denoising tasks. These methods aim at concealing noisy image pixels and utilizing self-supervised learning for their restoration. However, when applied to Optical Coherence Tomography (OCT) images, which exhibits strong auto-correlation between pixels, more effective mask strategies and denoising optimization techniques are required to improve these methods. To address this challenge, this paper proposes a novel approach called Dual Blind-Spot Network (DBSN). Firstly, a fast global mask mapper is designed to break the correlation between pixels in OCT images. Inside the blind-spot network, a conditional mask convolution block with donut convolution is embedded. The OCT images are processed through the global mask mapper and pixel shuffle before being fed into the blind-spot network, achieving two different blind-spot recoveries based on corresponding conditions. Additionally, the paper discusses the lower bound of the loss function in the case of convergence and adapts changes in the weight of the loss function during training. Furthermore, a denoising refinement module is employed to improve the denoising effect during the inference stage. The effectiveness of DBSN, as a self-supervised denoising approach, is tested through numerous experiments on OCT datasets, outperforming existing methods in terms of denoising performance.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[62220106006] ; Guangdong Basic and Applied Basic Research Foundation[2021B1515120013] ; Singapore Ministry of Health's National Medical Research Council under its Open Fund Individual Research Grant[MOH-OFIRG19may-0009] ; Ministry of Education Singapore["RG35/22","MOE-T2EP30120-0001"]
WOS研究方向
Engineering
WOS类目
Engineering, Biomedical
WOS记录号
WOS:001293526300001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/804661
专题工学院_电子与电气工程系
作者单位
1.Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Guangdong, Peoples R China
3.Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Jiangsu, Peoples R China
4.Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
推荐引用方式
GB/T 7714
Ge, Chenkun,Yu, Xiaojun,Yuan, Miao,et al. Dual blind-spot network for self-supervised denoising in OCT images[J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL,2024,97.
APA
Ge, Chenkun.,Yu, Xiaojun.,Yuan, Miao.,Su, Boning.,Chen, Jinna.,...&Liu, Linbo.(2024).Dual blind-spot network for self-supervised denoising in OCT images.BIOMEDICAL SIGNAL PROCESSING AND CONTROL,97.
MLA
Ge, Chenkun,et al."Dual blind-spot network for self-supervised denoising in OCT images".BIOMEDICAL SIGNAL PROCESSING AND CONTROL 97(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ge, Chenkun]的文章
[Yu, Xiaojun]的文章
[Yuan, Miao]的文章
百度学术
百度学术中相似的文章
[Ge, Chenkun]的文章
[Yu, Xiaojun]的文章
[Yuan, Miao]的文章
必应学术
必应学术中相似的文章
[Ge, Chenkun]的文章
[Yu, Xiaojun]的文章
[Yuan, Miao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。