中文版 | English
题名

A Video-based Automated Tracking and Analysis System of Plaque Burden in Carotid Artery using Deep Learning: A Comparison with Senior Sonographers

作者
通讯作者Dong, Yinghui; Song, Di; Dong, Fajin
发表日期
2024-04-01
DOI
发表期刊
ISSN
1573-4056
EISSN
1875-6603
摘要
["Background and Objective:","The incidence of stroke is rising, and it is the second major cause of mortality and the third leading cause of disability globally. The goal of this study was to rapidly and accurately identify carotid plaques and automatically quantify plaque burden using our automated tracking and segmentation US-video system.","Methods:","We collected 88 common carotid artery transection videos (11048 frames) with a history of atherosclerosis or risk factors for atherosclerosis, which were randomly divided into training, test, and validation sets using a 6:3:1 ratio. We first trained different segmentation models to segment the carotid intima and adventitia, and calculate the maximum plaque burden automatically. Finally, we statistically analyzed the plaque burden calculated automatically by the best model and the results of manual labeling by senior sonographers.","Results:","Of the three Artificial Intelligence (AI) models, the Robust Video Matting (RVM) segmentation model's carotid intima and adventitia Dice Coefficients (DC) were the highest, reaching 0.93 and 0.95, respectively. Moreover, the RVM model has shown the strongest correlation coefficient (0.61 +/- 0.28) with senior sonographers, and the diagnostic effectiveness between the RVM model and experts was comparable with paired-t test and Bland-Altman analysis [P=0.632 and ICC 0.01 (95% CI: -0.24 similar to 0.27), respectively].","Conclusion:","Our findings have indicated that the RVM model can be used in ultrasound carotid video. The RVM model can automatically segment and quantify atherosclerotic plaque burden at the same diagnostic level as senior sonographers. The application of AI to carotid videos offers more precise and effective methods to evaluate carotid atherosclerosis in clinical practice."]
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Clinical Scientist Training Program of Shenzhen People's Hospital[SYWGSCGZH202202] ; National Key Research and Development Program of China[2022YFC3602400] ; Science and Technology Program for Social Development of Heyuan[2023038]
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001292146900001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/804690
专题南方科技大学第一附属医院
作者单位
1.Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Clin Med Coll 2, Affiliated Hosp 1,Jinan Univ,Dept Ultrasound, Shenzhen 518020, Guangdong, Peoples R China
2.1Illuminate LLC, Dept Artificial Intelligence, Shenzhen 518000, Guangdong, Peoples R China
第一作者单位南方科技大学第一附属医院
通讯作者单位南方科技大学第一附属医院
第一作者的第一单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Gao, Wenjing,Liu, Mengmeng,Xu, Jinfeng,et al. A Video-based Automated Tracking and Analysis System of Plaque Burden in Carotid Artery using Deep Learning: A Comparison with Senior Sonographers[J]. CURRENT MEDICAL IMAGING,2024.
APA
Gao, Wenjing.,Liu, Mengmeng.,Xu, Jinfeng.,Hong, Shaofu.,Chen, Jiayi.,...&Dong, Fajin.(2024).A Video-based Automated Tracking and Analysis System of Plaque Burden in Carotid Artery using Deep Learning: A Comparison with Senior Sonographers.CURRENT MEDICAL IMAGING.
MLA
Gao, Wenjing,et al."A Video-based Automated Tracking and Analysis System of Plaque Burden in Carotid Artery using Deep Learning: A Comparison with Senior Sonographers".CURRENT MEDICAL IMAGING (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gao, Wenjing]的文章
[Liu, Mengmeng]的文章
[Xu, Jinfeng]的文章
百度学术
百度学术中相似的文章
[Gao, Wenjing]的文章
[Liu, Mengmeng]的文章
[Xu, Jinfeng]的文章
必应学术
必应学术中相似的文章
[Gao, Wenjing]的文章
[Liu, Mengmeng]的文章
[Xu, Jinfeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。