中文版 | English
题名

PedFed: A performance evaluation-driven federated learning framework for efficient communication

作者
通讯作者Niu, Ke; Li, Heng
发表日期
2024-08-01
DOI
发表期刊
ISSN
1793-9623
EISSN
1793-9615
摘要
Protecting healthcare data privacy and security is crucial in advanced manufacturing, which involves medical devices. It encompasses patient records and clinical trial data. Federated learning emerges as a solution that enables model training across different institutions without compromising data privacy and security. However, existing frameworks often exhibit a bias towards clients with larger data volumes, neglecting the connection between global and local model performance. This can result in suboptimal aggregation of the global model, thereby affecting the effectiveness and efficiency of the overall process. To address these limitations, we propose a performance evaluation-driven federated learning framework (PedFed). The primary objective of PedFed is to enhance global model aggregation and improve communication efficiency. Our approach involves a client selection strategy based on performance evaluation of local and global models. Specifically, we introduce the concept of local model improvement (LMI) using Intersection over Union (IoU) for client selection in medical image segmentation scenarios. Moreover, we introduce a dynamic aggregation framework incorporating validation IoU as a weighting factor to mitigate model divergence caused by not independent and identically distributed (non-IID) data. We focus on performing image segmentation tasks to simulate the analysis of sensitive data in the healthcare domain. Experimental results conducted on brain tumor and heart segmentation datasets demonstrate the superiority of the PedFed framework over the baseline framework, confirming its benefits in communication efficiency.
关键词
相关链接[来源记录]
收录类别
ESCI ; EI
语种
英语
学校署名
通讯
资助项目
Promoting the Classification and Development of Colleges - Student Innovation and Entrepreneurship Training Program (School of Computer)[5112410852]
WOS研究方向
Computer Science
WOS类目
Computer Science, Theory & Methods
WOS记录号
WOS:001292125900001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/804694
专题工学院_斯发基斯可信自主研究院
作者单位
1.Beijing Informat Sci & Technol Univ, Comp Sch, Beijing, Peoples R China
2.Univ Technol Sydney, Australian Artificial Intelligence Inst, Fac Engn & Informat Technol, Sydney, Australia
3.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Niu, Ke,Tai, Wenjuan,Peng, Xueping,et al. PedFed: A performance evaluation-driven federated learning framework for efficient communication[J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING,2024.
APA
Niu, Ke,Tai, Wenjuan,Peng, Xueping,Guo, Zhongmin,Zhang, Can,&Li, Heng.(2024).PedFed: A performance evaluation-driven federated learning framework for efficient communication.INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING.
MLA
Niu, Ke,et al."PedFed: A performance evaluation-driven federated learning framework for efficient communication".INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Niu, Ke]的文章
[Tai, Wenjuan]的文章
[Peng, Xueping]的文章
百度学术
百度学术中相似的文章
[Niu, Ke]的文章
[Tai, Wenjuan]的文章
[Peng, Xueping]的文章
必应学术
必应学术中相似的文章
[Niu, Ke]的文章
[Tai, Wenjuan]的文章
[Peng, Xueping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。