中文版 | English
题名

TrafPS: A shapley-based visual analytics approach to interpret traffic

作者
通讯作者Fan, Zipei; Song, Xuan
发表日期
2024-08-01
DOI
发表期刊
ISSN
2096-0433
EISSN
2096-0662
摘要
Recent achievements in deep learning (DL) have demonstrated its potential in predicting traffic flows. Such predictions are beneficial for understanding the situation and making traffic control decisions. However, most state-of-the-art DL models are considered "black boxes" with little to no transparency of the underlying mechanisms for end users. Some previous studies attempted to "open the black box" and increase the interpretability of generated predictions. However, handling complex models on large-scale spatiotemporal data and discovering salient spatial and temporal patterns that significantly influence traffic flow remain challenging. To overcome these challenges, we present TrafPS, a visual analytics approach for interpreting traffic prediction outcomes to support decision-making in traffic management and urban planning. The measurements region SHAP and trajectory SHAP are proposed to quantify the impact of flow patterns on urban traffic at different levels. Based on the task requirements from domain experts, we employed an interactive visual interface for the multi-aspect exploration and analysis of significant flow patterns. Two real-world case studies demonstrate the effectiveness of TrafPS in identifying key routes and providing decision-making support for urban planning.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Japan Society for the Promotion of Science (JSPS)[22H03573] ; National Natural Science Foundation of China["92067109","61873119"] ; Shenzhen Science and Technology Program["ZDSYS20210623092007023","GJHZ20210705141808024"] ; Guangdong Key Program[2021QN02X794]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering
WOS记录号
WOS:001303885200001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/805061
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 18055, Peoples R China
2.Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China
3.Univ Reading, Dept Comp Sci, Berkshire RG6 6AH, England
4.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo 11300331, Japan
5.Southern Univ Sci & Technol, Shenzhen Key Lab Safety & Secur Next Generat Ind I, Shenzhen 518055, Peoples R China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Feng, Zezheng,Jiang, Yifan,Wang, Hongjun,et al. TrafPS: A shapley-based visual analytics approach to interpret traffic[J]. COMPUTATIONAL VISUAL MEDIA,2024.
APA
Feng, Zezheng.,Jiang, Yifan.,Wang, Hongjun.,Fan, Zipei.,Ma, Yuxin.,...&Song, Xuan.(2024).TrafPS: A shapley-based visual analytics approach to interpret traffic.COMPUTATIONAL VISUAL MEDIA.
MLA
Feng, Zezheng,et al."TrafPS: A shapley-based visual analytics approach to interpret traffic".COMPUTATIONAL VISUAL MEDIA (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Feng, Zezheng]的文章
[Jiang, Yifan]的文章
[Wang, Hongjun]的文章
百度学术
百度学术中相似的文章
[Feng, Zezheng]的文章
[Jiang, Yifan]的文章
[Wang, Hongjun]的文章
必应学术
必应学术中相似的文章
[Feng, Zezheng]的文章
[Jiang, Yifan]的文章
[Wang, Hongjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。