题名 | TrafPS: A shapley-based visual analytics approach to interpret traffic |
作者 | |
通讯作者 | Fan, Zipei; Song, Xuan |
发表日期 | 2024-08-01
|
DOI | |
发表期刊 | |
ISSN | 2096-0433
|
EISSN | 2096-0662
|
摘要 | Recent achievements in deep learning (DL) have demonstrated its potential in predicting traffic flows. Such predictions are beneficial for understanding the situation and making traffic control decisions. However, most state-of-the-art DL models are considered "black boxes" with little to no transparency of the underlying mechanisms for end users. Some previous studies attempted to "open the black box" and increase the interpretability of generated predictions. However, handling complex models on large-scale spatiotemporal data and discovering salient spatial and temporal patterns that significantly influence traffic flow remain challenging. To overcome these challenges, we present TrafPS, a visual analytics approach for interpreting traffic prediction outcomes to support decision-making in traffic management and urban planning. The measurements region SHAP and trajectory SHAP are proposed to quantify the impact of flow patterns on urban traffic at different levels. Based on the task requirements from domain experts, we employed an interactive visual interface for the multi-aspect exploration and analysis of significant flow patterns. Two real-world case studies demonstrate the effectiveness of TrafPS in identifying key routes and providing decision-making support for urban planning. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Japan Society for the Promotion of Science (JSPS)[22H03573]
; National Natural Science Foundation of China["92067109","61873119"]
; Shenzhen Science and Technology Program["ZDSYS20210623092007023","GJHZ20210705141808024"]
; Guangdong Key Program[2021QN02X794]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Software Engineering
|
WOS记录号 | WOS:001303885200001
|
出版者 | |
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/805061 |
专题 | 工学院_计算机科学与工程系 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 18055, Peoples R China 2.Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Peoples R China 3.Univ Reading, Dept Comp Sci, Berkshire RG6 6AH, England 4.Univ Tokyo, Ctr Spatial Informat Sci, Tokyo 11300331, Japan 5.Southern Univ Sci & Technol, Shenzhen Key Lab Safety & Secur Next Generat Ind I, Shenzhen 518055, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Feng, Zezheng,Jiang, Yifan,Wang, Hongjun,et al. TrafPS: A shapley-based visual analytics approach to interpret traffic[J]. COMPUTATIONAL VISUAL MEDIA,2024.
|
APA |
Feng, Zezheng.,Jiang, Yifan.,Wang, Hongjun.,Fan, Zipei.,Ma, Yuxin.,...&Song, Xuan.(2024).TrafPS: A shapley-based visual analytics approach to interpret traffic.COMPUTATIONAL VISUAL MEDIA.
|
MLA |
Feng, Zezheng,et al."TrafPS: A shapley-based visual analytics approach to interpret traffic".COMPUTATIONAL VISUAL MEDIA (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论