中文版 | English
题名

Low-Light Salient Object Detection Meets the Small Size

作者
通讯作者Xu, Xin
发表日期
2024-08-01
DOI
发表期刊
ISSN
2471-285X
摘要
Low-light Small Salient Object Detection (LS-SOD) focuses on small salient objects in low light, a crucial and realistic problem for nighttime automatic driving and surveillance. However, relatively few efforts have been put toward LS-SOD due to the challenge of collecting and precisely annotating massive LS-SOD data. To advance the research and evaluation in this area, we elaborately collect the first new real LS-SOD dataset, termed Low light Salient Pedestrian/Vehicle (LSPV) dataset. LSPV comprises 3,100 low-light small pedestrians/vehicles images and covers diverse, challenging cases (e.g., low-light, non-uniform illumination environment, and small objects). Meanwhile, to mitigate the large-scale training data scarcity and avoid laborious manual labeling, we proposed a Scale-Illumination (SI) data augmentation method to easily create infinite LS-SOD samples with diverse illumination and salient object scale sizes. Another reason for the under-exploration of LS-SOD is the technical difficulty posed by partially low contrast and limited visual information of small objects in low light, which hinders existing SOD methods from accurately locating and segmenting salient objects. To this end, we propose a baseline LS-SOD network named Illumination and Edge-Driven Network (IEDNet), which explicitly learns illumination and edge features to guide saliency detection. Furthermore, a practical Crop-Fusion (CF) post-processing strategy is further proposed to refine the initial saliency maps. Extensive experiments show that our SI and CF strategies significantly improve current SOD models' performance on the LS-SOD dataset. Moreover, our method achieves state-of-the-art performance on both the real LS-SOD and DUTS-TE datasets.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
Natural Science Foundation of China["62376201","U1803262","61602349","61440016"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence
WOS记录号
WOS:001303427100001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/805066
专题工学院_计算机科学与工程系
作者单位
1.Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430065, Peoples R China
2.Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Wuhan 430072, Peoples R China
3.Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150000, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Key Lab Brain Inspired Intelligent Compu, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Wang, Shiqin,Xu, Xin,Chen, Haoyang,et al. Low-Light Salient Object Detection Meets the Small Size[J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE,2024.
APA
Wang, Shiqin,Xu, Xin,Chen, Haoyang,Jiang, Kui,Wang, Zheng,&Tang, Ke.(2024).Low-Light Salient Object Detection Meets the Small Size.IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE.
MLA
Wang, Shiqin,et al."Low-Light Salient Object Detection Meets the Small Size".IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Shiqin]的文章
[Xu, Xin]的文章
[Chen, Haoyang]的文章
百度学术
百度学术中相似的文章
[Wang, Shiqin]的文章
[Xu, Xin]的文章
[Chen, Haoyang]的文章
必应学术
必应学术中相似的文章
[Wang, Shiqin]的文章
[Xu, Xin]的文章
[Chen, Haoyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。