中文版 | English
题名

A gene regulatory network-aware graph learning method for cell identity annotation in single-cell RNA-seq data

作者
通讯作者Tang, Jijun; Guo, Fei
发表日期
2024-07-01
DOI
发表期刊
ISSN
1088-9051
EISSN
1549-5469
卷号34期号:7
摘要
Cell identity annotation for single-cell transcriptome data is a crucial process for constructing cell atlases, unraveling pathogenesis, and inspiring therapeutic approaches. Currently, the efficacy of existing methodologies is contingent upon specific data sets. Nevertheless, such data are often sourced from various batches, sequencing technologies, tissues, and even species. Notably, the gene regulatory relationship remains unaffected by the aforementioned factors, highlighting the extensive gene interactions within organisms. Therefore, we propose scHGR, an automated annotation tool designed to leverage gene regulatory relationships in constructing gene-mediated cell communication graphs for single-cell transcriptome data. This strategy helps reduce noise from diverse data sources while establishing distant cellular connections, yielding valuable biological insights. Experiments involving 22 scenarios demonstrate that scHGR precisely and consistently annotates cell identities, benchmarked against state-of-the-art methods. Crucially, scHGR uncovers novel subtypes within peripheral blood mononuclear cells, specifically from CD4+ T cells and cytotoxic T cells. Furthermore, by characterizing a cell atlas comprising 56 cell types for COVID-19 patients, scHGR identifies vital factors like IL1 and calcium ions, offering insights for targeted therapeutic interventions.
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China (NSFC)["62322215","62172296"] ; Shenzhen Science and Technology Program[KQTD20200820113106007] ; Excellent Young Scientists Fund in Hunan Province[2022JJ20077] ; High-performance computing clusters of Shenzhen Institutes of Advanced Technology[PL-17161]
WOS研究方向
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Genetics & Heredity
WOS类目
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Genetics & Heredity
WOS记录号
WOS:001303143700001
出版者
ESI学科分类
MOLECULAR BIOLOGY & GENETICS
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/805084
专题工学院
作者单位
1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Coll Comp Sci & Control Engn, Shenzhen 518055, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
3.Tianjin Univ, Coll Intelligence & Comp, Tianjin 300350, Peoples R China
4.Univ South Carolina, Comp Sci & Engn, Columbia, SC 29208 USA
5.Southern Univ Sci & Technol, Coll Engn, Shenzhen 518055, Peoples R China
6.Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
推荐引用方式
GB/T 7714
Zhao, Mengyuan,Li, Jiawei,Liu, Xiaoyi,et al. A gene regulatory network-aware graph learning method for cell identity annotation in single-cell RNA-seq data[J]. GENOME RESEARCH,2024,34(7).
APA
Zhao, Mengyuan,Li, Jiawei,Liu, Xiaoyi,Ma, Ke,Tang, Jijun,&Guo, Fei.(2024).A gene regulatory network-aware graph learning method for cell identity annotation in single-cell RNA-seq data.GENOME RESEARCH,34(7).
MLA
Zhao, Mengyuan,et al."A gene regulatory network-aware graph learning method for cell identity annotation in single-cell RNA-seq data".GENOME RESEARCH 34.7(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao, Mengyuan]的文章
[Li, Jiawei]的文章
[Liu, Xiaoyi]的文章
百度学术
百度学术中相似的文章
[Zhao, Mengyuan]的文章
[Li, Jiawei]的文章
[Liu, Xiaoyi]的文章
必应学术
必应学术中相似的文章
[Zhao, Mengyuan]的文章
[Li, Jiawei]的文章
[Liu, Xiaoyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。