题名 | Enumeration and Representation Theory of Spin Space Groups |
作者 | |
通讯作者 | Liu, Qihang |
发表日期 | 2024-08-28
|
DOI | |
发表期刊 | |
ISSN | 2160-3308
|
卷号 | 14期号:3 |
摘要 | Fundamental physical properties, such as phase transitions, electronic structures, and spin excitations, in all magnetic ordered materials, were ultimately believed to rely on the symmetry theory of magnetic space groups. Recently, it has come to light that a more comprehensive group, known as the spin space group (SSG), which combines separate spin and spatial operations, is necessary to fully characterize the geometry and underlying properties of magnetic ordered materials. However, the basic theory of SSG has seldom been developed. In this work, we present a systematic study of the enumeration and the representation theory of the SSG. Starting from the 230 crystallographic space groups and finite translation groups with a maximum order of eight, we establish an extensive collection of over 100 000 SSGs under a four-index nomenclature as well as international notation. We then identify inequivalent SSGs specifically applicable to collinear, coplanar, and noncoplanar magnetic configurations. To facilitate the identification of the SSG, we develop an online program that can determine the SSG symmetries of any magnetic ordered crystal. Moreover, we derive the irreducible corepresentations of the little group in momentum space within the SSG framework. Finally, we illustrate the SSG symmetries and physical effects beyond the framework of magnetic space groups through several representative material examples, including a candidate altermagnet RuO2, spiral spin polarization in the coplanar antiferromagnet CeAuAl3, and geometric Hall effect in the noncoplanar antiferromagnet CoNb3S6. Our work advances the field of group theory in describing magnetic ordered materials, opening up avenues for deeper comprehension and further exploration of emergent phenomena in magnetic materials. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Key R&D Program of China[2020YFA0308900]
; National Natural Science Foundation of China[12274194]
; Guangdong Provincial Key Laboratory for Computational Science and Material Design[2019B030301001]
; Shenzhen Science and Technology Program["RCJC202210080 92722009","20231117091158001"]
; Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20190902092905285]
; Special Funds for the Cultivation of Guangdong College Students ' Scientific and Technological Innovation[pdjh2024c10202]
; China Postdoctoral Science Foundation[2023M741544]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Multidisciplinary
|
WOS记录号 | WOS:001302265700002
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:8
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/805094 |
专题 | 理学院_物理系 南方科技大学 理学院_数学系 量子科学与工程研究院 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen, Shenzhen 518055, Peoples R China 4.Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China 5.Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China 6.Southern Univ Sci & Technol, Shenzhen Key Lab Adv Quantum Funct Mat & Devices, Shenzhen 518055, Peoples R China |
第一作者单位 | 物理系; 量子科学与工程研究院 |
通讯作者单位 | 物理系; 量子科学与工程研究院; 南方科技大学 |
第一作者的第一单位 | 物理系 |
推荐引用方式 GB/T 7714 |
Chen, Xiaobing,Ren, Jun,Zhu, Yanzhou,et al. Enumeration and Representation Theory of Spin Space Groups[J]. PHYSICAL REVIEW X,2024,14(3).
|
APA |
Chen, Xiaobing.,Ren, Jun.,Zhu, Yanzhou.,Yu, Yutong.,Zhang, Ao.,...&Liu, Qihang.(2024).Enumeration and Representation Theory of Spin Space Groups.PHYSICAL REVIEW X,14(3).
|
MLA |
Chen, Xiaobing,et al."Enumeration and Representation Theory of Spin Space Groups".PHYSICAL REVIEW X 14.3(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论