中文版 | English
题名

Batch subproblem coevolution with gaussian process-driven linear models for expensive multi-objective optimization

作者
通讯作者Li, Genghui
发表日期
2024-12-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号91
摘要
The efficacy of surrogate-assisted multi-objective evolutionary algorithms (SAMOEAs) in addressing expensive multi-objective optimization problems (MOPs) is contingent upon the modeling techniques and model-based infill sampling strategies. In addressing this pivotal aspect, this paper introduces a pioneering methodology known as batch subproblem coevolution with Gaussian process-driven linear models (BSCo-GPLM). Specifically, from a modeling perspective, BSCo-GPLM decomposes the MOP into single-objective subproblems. Following this decomposition, for each subproblem, a Gaussian process-driven linear model (GPLM) is collaboratively trained to prevent overfitting and improve prediction accuracy. Regarding infill sampling, collaborative optimization of all GPLMs yields optimal candidate solutions for each subproblem, organized into coherent clusters. Within each cluster, only the solution with the highest utility is evaluated. Relying on the heightened prediction accuracy of the GPLM model and an efficient batch sampling strategy, BSCo-GPLM exhibits clear superiority over state-of-the-art SAMOEAs in effectively addressing expensive MOPs. The source code of BSCo-GPLM is available at https://github.com/CIAM-Group/EvolutionaryAlgorithm_Codes/tree/main/BSCoGPLM.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001301140800001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/805133
专题工学院_系统设计与智能制造学院
工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen, Guangdong, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
3.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Guangdong, Peoples R China
第一作者单位系统设计与智能制造学院;  计算机科学与工程系
第一作者的第一单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Wang, Zhenkun,Chen, Yuanyao,Li, Genghui,et al. Batch subproblem coevolution with gaussian process-driven linear models for expensive multi-objective optimization[J]. SWARM AND EVOLUTIONARY COMPUTATION,2024,91.
APA
Wang, Zhenkun,Chen, Yuanyao,Li, Genghui,Xie, Lindong,&Zhang, Yu.(2024).Batch subproblem coevolution with gaussian process-driven linear models for expensive multi-objective optimization.SWARM AND EVOLUTIONARY COMPUTATION,91.
MLA
Wang, Zhenkun,et al."Batch subproblem coevolution with gaussian process-driven linear models for expensive multi-objective optimization".SWARM AND EVOLUTIONARY COMPUTATION 91(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Zhenkun]的文章
[Chen, Yuanyao]的文章
[Li, Genghui]的文章
百度学术
百度学术中相似的文章
[Wang, Zhenkun]的文章
[Chen, Yuanyao]的文章
[Li, Genghui]的文章
必应学术
必应学术中相似的文章
[Wang, Zhenkun]的文章
[Chen, Yuanyao]的文章
[Li, Genghui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。