题名 | Batch subproblem coevolution with gaussian process-driven linear models for expensive multi-objective optimization |
作者 | |
通讯作者 | Li, Genghui |
发表日期 | 2024-12-01
|
DOI | |
发表期刊 | |
ISSN | 2210-6502
|
EISSN | 2210-6510
|
卷号 | 91 |
摘要 | The efficacy of surrogate-assisted multi-objective evolutionary algorithms (SAMOEAs) in addressing expensive multi-objective optimization problems (MOPs) is contingent upon the modeling techniques and model-based infill sampling strategies. In addressing this pivotal aspect, this paper introduces a pioneering methodology known as batch subproblem coevolution with Gaussian process-driven linear models (BSCo-GPLM). Specifically, from a modeling perspective, BSCo-GPLM decomposes the MOP into single-objective subproblems. Following this decomposition, for each subproblem, a Gaussian process-driven linear model (GPLM) is collaboratively trained to prevent overfitting and improve prediction accuracy. Regarding infill sampling, collaborative optimization of all GPLMs yields optimal candidate solutions for each subproblem, organized into coherent clusters. Within each cluster, only the solution with the highest utility is evaluated. Relying on the heightened prediction accuracy of the GPLM model and an efficient batch sampling strategy, BSCo-GPLM exhibits clear superiority over state-of-the-art SAMOEAs in effectively addressing expensive MOPs. The source code of BSCo-GPLM is available at https://github.com/CIAM-Group/EvolutionaryAlgorithm_Codes/tree/main/BSCoGPLM. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001301140800001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/805133 |
专题 | 工学院_系统设计与智能制造学院 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen, Guangdong, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China 3.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Guangdong, Peoples R China |
第一作者单位 | 系统设计与智能制造学院; 计算机科学与工程系 |
第一作者的第一单位 | 系统设计与智能制造学院 |
推荐引用方式 GB/T 7714 |
Wang, Zhenkun,Chen, Yuanyao,Li, Genghui,et al. Batch subproblem coevolution with gaussian process-driven linear models for expensive multi-objective optimization[J]. SWARM AND EVOLUTIONARY COMPUTATION,2024,91.
|
APA |
Wang, Zhenkun,Chen, Yuanyao,Li, Genghui,Xie, Lindong,&Zhang, Yu.(2024).Batch subproblem coevolution with gaussian process-driven linear models for expensive multi-objective optimization.SWARM AND EVOLUTIONARY COMPUTATION,91.
|
MLA |
Wang, Zhenkun,et al."Batch subproblem coevolution with gaussian process-driven linear models for expensive multi-objective optimization".SWARM AND EVOLUTIONARY COMPUTATION 91(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论