中文版 | English
题名

Information compression via hidden subgroup quantum autoencoders

作者
通讯作者Meng, Fei; Zhang, Wen; Dahlsten, Oscar
发表日期
2024-12
DOI
发表期刊
EISSN
2056-6387
卷号10期号:1
摘要
We design a quantum method for classical information compression that exploits the hidden subgroup quantum algorithm. We consider sequence data in a database with a priori unknown symmetries of the hidden subgroup type. We prove that data with a given group structure can be compressed with the same query complexity as the hidden subgroup problem, which is exponentially faster than the best-known classical algorithms. We moreover design a quantum algorithm that variationally finds the group structure and uses it to compress the data. There is an encoder and a decoder, along the paradigm of quantum autoencoders. After the training, the encoder outputs a compressed data string and a description of the hidden subgroup symmetry, from which the input data can be recovered by the decoder. In illustrative examples, our algorithm outperforms the classical autoencoder on the mean squared value of test data. This classical-quantum separation in information compression capability has thermodynamical significance: the free energy assigned by a quantum agent to a system can be much higher than that of a classical agent. Taken together, our results show that a possible application of quantum computers is to efficiently compress certain types of data that cannot be efficiently compressed by current methods using classical computers.
© The Author(s) 2024.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
We gratefully acknowledge discussions with Zhaohui Wei, Zizhu Wang, Yuxuan Du, Mile Gu, Jayne Thompson, Yupan Liu, Jon Allcock, Shyam Dhamapurkar, Nana Liu, Sirui Ning, Swati Singh, Tian Zhang, and support from HiSilicon. This work was in part carried out using the computational facilities of CityU Burgundy, managed and provided by the Computing Services Centre at the City University of Hong Kong ( https://www.cityu.edu.hk/ ). OD acknowledges support from the National Natural Science Foundation of China (Grants No. 12050410246, No.1200509, No.12050410245) and the City University of Hong Kong (Project No. 9610623).
出版者
EI入藏号
20243316870743
EI主题词
Decoding ; Learning systems ; Quantum computers ; Quantum theory ; Query processing ; Signal encoding
EI分类号
Thermodynamics:641.1 ; Information Theory and Signal Processing:716.1 ; Computer Systems and Equipment:722 ; Data Processing and Image Processing:723.2 ; Quantum Theory; Quantum Mechanics:931.4
Scopus记录号
2-s2.0-85200837615
来源库
EV Compendex
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/807013
专题理学院_物理系
南方科技大学
量子科学与工程研究院
作者单位
1.Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
2.Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Nanshan District, Shenzhen; 518055, China
3.HiSilicon Research, Huawei Technologies Co., Ltd., Shenzhen, China
4.Institute of Nanoscience and Applications, Southern University of Science and Technology, Nanshan District, Shenzhen; 518055, China
第一作者单位物理系;  量子科学与工程研究院
通讯作者单位物理系;  量子科学与工程研究院;  南方科技大学
推荐引用方式
GB/T 7714
Liu, Feiyang,Bian, Kaiming,Meng, Fei,et al. Information compression via hidden subgroup quantum autoencoders[J]. npj Quantum Information,2024,10(1).
APA
Liu, Feiyang,Bian, Kaiming,Meng, Fei,Zhang, Wen,&Dahlsten, Oscar.(2024).Information compression via hidden subgroup quantum autoencoders.npj Quantum Information,10(1).
MLA
Liu, Feiyang,et al."Information compression via hidden subgroup quantum autoencoders".npj Quantum Information 10.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Feiyang]的文章
[Bian, Kaiming]的文章
[Meng, Fei]的文章
百度学术
百度学术中相似的文章
[Liu, Feiyang]的文章
[Bian, Kaiming]的文章
[Meng, Fei]的文章
必应学术
必应学术中相似的文章
[Liu, Feiyang]的文章
[Bian, Kaiming]的文章
[Meng, Fei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。