中文版 | English
题名

Degradation prediction of proton exchange membrane fuel cell using a novel neuron-fuzzy model based on light spectrum optimizer

作者
通讯作者Wang, Haijiang; Liu, Hao
发表日期
2024-11
DOI
发表期刊
ISSN
0960-1481
EISSN
1879-0682
卷号234
摘要
Proton exchange membrane fuel cell (PEMFC) is regarded as the most promising clean energy to address the fossil energy crisis and environmental pollution. However, it is susceptible to frequently variable load and the impurities of hydrogen, which can directly cause the degradation of performance over time during operations. Degradation prediction has received much attention in recent years, as it can improve the durability and reliability of the PEMFC system. This paper proposes an effective multi-step-ahead prediction for PEMFC degradation under various operational conditions by using variational mode decomposition (VMD), a double recurrent fuzzy neural network (DRFNN), and a light spectrum optimizer (LSO). The integrated method enables precise prediction of degradation trends of PEMFC using historical testing data, which brings together their advantages. To better learn degradation trends, VMD is applied to decompose the input voltage signal into a series of sub-signals with a simpler structure. Then, DRFNN with a feedback loop is developed to train each sub-signal model, which can learn and memorize past information. To further enhance the prediction precision of degradation model, LSO is adopted to automatically update the network's weights. Finally, the prediction performance of the proposed method is experimentally verified under different load conditions. Compared with other degradation methods, the test results reveal that the proposed method can achieve significant improvements in terms of multi-step-ahead prediction accuracy and robustness.
© 2024 Elsevier Ltd
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
The authors would like to thank the support of the Guangdong Innovative and Entrepreneurial Research Team Program, China (2016ZT06N500), Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, China (2018B030322001), National Natural Science Foundation of Zhejiang Province (LQ23E050015), National Key Research and Development Program of China (2022YFB4003800), and National Natural Science Foundation of China (62173264). In addition, the author would like to thank the anonymous referees and the editors for their helpful comments on this manuscript.
出版者
EI入藏号
20243416908548
EI主题词
Prediction models
EI分类号
:1101 ; :1106.6 ; Information Theory and Signal Processing:716.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85201368997
来源库
EV Compendex
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/807028
专题工学院_机械与能源工程系
南方科技大学
作者单位
1.Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen; 518055, China
2.Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen; 518055, China
3.State Key Laboratory of Fluid Power Components and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou; 310027, China
4.School of Automation, Wuhan University of Technology, Wuhan; 430070, China
第一作者单位机械与能源工程系
通讯作者单位机械与能源工程系;  南方科技大学
第一作者的第一单位机械与能源工程系
推荐引用方式
GB/T 7714
Deng, Zhihua,Wang, Haijiang,Liu, Hao,et al. Degradation prediction of proton exchange membrane fuel cell using a novel neuron-fuzzy model based on light spectrum optimizer[J]. Renewable Energy,2024,234.
APA
Deng, Zhihua,Wang, Haijiang,Liu, Hao,Chen, Qihong,&Zhang, Jiashun.(2024).Degradation prediction of proton exchange membrane fuel cell using a novel neuron-fuzzy model based on light spectrum optimizer.Renewable Energy,234.
MLA
Deng, Zhihua,et al."Degradation prediction of proton exchange membrane fuel cell using a novel neuron-fuzzy model based on light spectrum optimizer".Renewable Energy 234(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Deng, Zhihua]的文章
[Wang, Haijiang]的文章
[Liu, Hao]的文章
百度学术
百度学术中相似的文章
[Deng, Zhihua]的文章
[Wang, Haijiang]的文章
[Liu, Hao]的文章
必应学术
必应学术中相似的文章
[Deng, Zhihua]的文章
[Wang, Haijiang]的文章
[Liu, Hao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。