中文版 | English
题名

Tensorized Ant Colony Optimization for GPU Acceleration

作者
通讯作者Cheng, Ran
DOI
发表日期
2024-07-14
会议名称
2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
ISBN
9798400704956
会议录名称
页码
755-758
会议日期
July 14, 2024 - July 18, 2024
会议地点
Melbourne, VIC, Australia
会议录编者/会议主办者
Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO)
出版者
摘要
Ant Colony Optimization (ACO) is renowned for its effectiveness in solving Traveling Salesman Problems, yet it faces computational challenges in CPU-based environments, particularly with large-scale instances. In response, we introduce a Tensorized Ant Colony Optimization (TensorACO) to utilize the advancements of GPU acceleration. As the core, TensorACO fully transforms ant system and ant path into tensor forms, a process we refer to as tensorization. For the tensorization of ant system, we propose a preprocessing method to reduce the computational overhead by calculating the probability transition matrix. In the tensorization of ant path, we propose an index mapping method to accelerate the update of pheromone matrix by replacing the mechanism of sequential path update with parallel matrix operations. Additionally, we introduce an Adaptive Independent Roulette (AdaIR) method to overcome the challenges of parallelizing ACO's selection mechanism on GPUs. Comprehensive experiments demonstrate the superior performance of TensorACO achieving up to 1921× speedup over standard ACO. Moreover, the AdaIR method further improves TensorACO's convergence speed by 80% and solution quality by 2%. Source codes are available at https://github.com/EMI-Group/tensoraco.
© 2024 Copyright held by the owner/author(s).
学校署名
第一 ; 通讯
语种
英语
收录类别
EI入藏号
20243516939857
EI主题词
Ada (programming language) ; Computer graphics equipment ; Health risks ; Matrix algebra ; Tensors ; Traveling salesman problem
EI分类号
:102.1.2.1 ; :1103.2 ; :1106.1.1 ; :1201.1 ; :1201.14 ; :1201.4 ; :1201.7 ; :1201.8
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/807083
专题南方科技大学
作者单位
Southern University of Science and Technology, Guangdong, Shenzhen, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Yang, Luming,Jiang, Tao,Cheng, Ran. Tensorized Ant Colony Optimization for GPU Acceleration[C]//Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO):Association for Computing Machinery, Inc,2024:755-758.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang, Luming]的文章
[Jiang, Tao]的文章
[Cheng, Ran]的文章
百度学术
百度学术中相似的文章
[Yang, Luming]的文章
[Jiang, Tao]的文章
[Cheng, Ran]的文章
必应学术
必应学术中相似的文章
[Yang, Luming]的文章
[Jiang, Tao]的文章
[Cheng, Ran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。