题名 | Tensorized Ant Colony Optimization for GPU Acceleration |
作者 | |
通讯作者 | Cheng, Ran |
DOI | |
发表日期 | 2024-07-14
|
会议名称 | 2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
|
ISBN | 9798400704956
|
会议录名称 | |
页码 | 755-758
|
会议日期 | July 14, 2024 - July 18, 2024
|
会议地点 | Melbourne, VIC, Australia
|
会议录编者/会议主办者 | Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO)
|
出版者 | |
摘要 | Ant Colony Optimization (ACO) is renowned for its effectiveness in solving Traveling Salesman Problems, yet it faces computational challenges in CPU-based environments, particularly with large-scale instances. In response, we introduce a Tensorized Ant Colony Optimization (TensorACO) to utilize the advancements of GPU acceleration. As the core, TensorACO fully transforms ant system and ant path into tensor forms, a process we refer to as tensorization. For the tensorization of ant system, we propose a preprocessing method to reduce the computational overhead by calculating the probability transition matrix. In the tensorization of ant path, we propose an index mapping method to accelerate the update of pheromone matrix by replacing the mechanism of sequential path update with parallel matrix operations. Additionally, we introduce an Adaptive Independent Roulette (AdaIR) method to overcome the challenges of parallelizing ACO's selection mechanism on GPUs. Comprehensive experiments demonstrate the superior performance of TensorACO achieving up to 1921× speedup over standard ACO. Moreover, the AdaIR method further improves TensorACO's convergence speed by 80% and solution quality by 2%. Source codes are available at https://github.com/EMI-Group/tensoraco. © 2024 Copyright held by the owner/author(s). |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
EI入藏号 | 20243516939857
|
EI主题词 | Ada (programming language)
; Computer graphics equipment
; Health risks
; Matrix algebra
; Tensors
; Traveling salesman problem
|
EI分类号 | :102.1.2.1
; :1103.2
; :1106.1.1
; :1201.1
; :1201.14
; :1201.4
; :1201.7
; :1201.8
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/807083 |
专题 | 南方科技大学 |
作者单位 | Southern University of Science and Technology, Guangdong, Shenzhen, China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yang, Luming,Jiang, Tao,Cheng, Ran. Tensorized Ant Colony Optimization for GPU Acceleration[C]//Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO):Association for Computing Machinery, Inc,2024:755-758.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论