题名 | A Multi-objective Optimization Benchmark Test Suite for Real-time Semantic Segmentation |
作者 | |
通讯作者 | Cheng, Ran |
DOI | |
发表日期 | 2024-07-14
|
会议名称 | 2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
|
ISBN | 9798400704956
|
会议录名称 | |
页码 | 163-166
|
会议日期 | July 14, 2024 - July 18, 2024
|
会议地点 | Melbourne, VIC, Australia
|
会议录编者/会议主办者 | Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO)
|
出版者 | |
摘要 | As one of the emerging challenges in Automated Machine Learning, the Hardware-aware Neural Architecture Search (HW-NAS) tasks can be treated as black-box multi-objective optimization problems (MOPs). An important application of HW-NAS is real-time semantic segmentation, which plays a pivotal role in autonomous driving scenarios. The HW-NAS for real-time semantic segmentation inherently needs to balance multiple optimization objectives, including model accuracy, inference speed, and hardware-specific considerations. Despite its importance, benchmarks have yet to be developed to frame such a challenging task as multi-objective optimization. To bridge the gap, we introduce a tailored streamline to transform the task of HW-NAS for real-time semantic segmentation into standard MOPs. Building upon the streamline, we present a benchmark test suite, CitySeg/MOP, comprising fifteen MOPs derived from the Cityscapes dataset. The CitySeg/MOP test suite is integrated into the EvoXBench platform to provide seamless interfaces with various programming languages (e.g., Python and MATLAB) for instant fitness evaluations. We comprehensively assessed the CitySeg/MOP test suite on various multi-objective evolutionary algorithms, showcasing its versatility and practicality. Source codes are available at https://github.com/EMI-Group/evoxbench. © 2024 Copyright held by the owner/author(s). |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
收录类别 | |
EI入藏号 | 20243516939854
|
EI主题词 | Benchmarking
; Black-box testing
; Digital storage
; MATLAB
; Multiobjective optimization
; Problem oriented languages
; Semantics
|
EI分类号 | :1103.1
; :1106.1.1
; :1106.5
; :1106.8
; :1201.5
; :1201.7
; Information Dissemination:903.2
; Quality Assurance and Control:913.3
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/807084 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology, Guangdong, Shenzhen, China 2.City University of Hong Kong, Hong Kong, Hong Kong |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhao, Yifan,Liang, Zhenyu,Lu, Zhichao,et al. A Multi-objective Optimization Benchmark Test Suite for Real-time Semantic Segmentation[C]//Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO):Association for Computing Machinery, Inc,2024:163-166.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论