中文版 | English
题名

A Multi-objective Optimization Benchmark Test Suite for Real-time Semantic Segmentation

作者
通讯作者Cheng, Ran
DOI
发表日期
2024-07-14
会议名称
2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
ISBN
9798400704956
会议录名称
页码
163-166
会议日期
July 14, 2024 - July 18, 2024
会议地点
Melbourne, VIC, Australia
会议录编者/会议主办者
Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO)
出版者
摘要
As one of the emerging challenges in Automated Machine Learning, the Hardware-aware Neural Architecture Search (HW-NAS) tasks can be treated as black-box multi-objective optimization problems (MOPs). An important application of HW-NAS is real-time semantic segmentation, which plays a pivotal role in autonomous driving scenarios. The HW-NAS for real-time semantic segmentation inherently needs to balance multiple optimization objectives, including model accuracy, inference speed, and hardware-specific considerations. Despite its importance, benchmarks have yet to be developed to frame such a challenging task as multi-objective optimization. To bridge the gap, we introduce a tailored streamline to transform the task of HW-NAS for real-time semantic segmentation into standard MOPs. Building upon the streamline, we present a benchmark test suite, CitySeg/MOP, comprising fifteen MOPs derived from the Cityscapes dataset. The CitySeg/MOP test suite is integrated into the EvoXBench platform to provide seamless interfaces with various programming languages (e.g., Python and MATLAB) for instant fitness evaluations. We comprehensively assessed the CitySeg/MOP test suite on various multi-objective evolutionary algorithms, showcasing its versatility and practicality. Source codes are available at https://github.com/EMI-Group/evoxbench.
© 2024 Copyright held by the owner/author(s).
学校署名
第一 ; 通讯
语种
英语
收录类别
EI入藏号
20243516939854
EI主题词
Benchmarking ; Black-box testing ; Digital storage ; MATLAB ; Multiobjective optimization ; Problem oriented languages ; Semantics
EI分类号
:1103.1 ; :1106.1.1 ; :1106.5 ; :1106.8 ; :1201.5 ; :1201.7 ; Information Dissemination:903.2 ; Quality Assurance and Control:913.3
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/807084
专题南方科技大学
作者单位
1.Southern University of Science and Technology, Guangdong, Shenzhen, China
2.City University of Hong Kong, Hong Kong, Hong Kong
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhao, Yifan,Liang, Zhenyu,Lu, Zhichao,et al. A Multi-objective Optimization Benchmark Test Suite for Real-time Semantic Segmentation[C]//Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO):Association for Computing Machinery, Inc,2024:163-166.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao, Yifan]的文章
[Liang, Zhenyu]的文章
[Lu, Zhichao]的文章
百度学术
百度学术中相似的文章
[Zhao, Yifan]的文章
[Liang, Zhenyu]的文章
[Lu, Zhichao]的文章
必应学术
必应学术中相似的文章
[Zhao, Yifan]的文章
[Liang, Zhenyu]的文章
[Lu, Zhichao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。