中文版 | English
题名

Feature Attribution Explanation Based on Multi-Objective Evolutionary Learning

作者
通讯作者Yao, Xin
DOI
发表日期
2024-07-14
会议名称
2024 Genetic and Evolutionary Computation Conference Companion, GECCO 2024 Companion
ISBN
9798400704956
会议录名称
页码
61-62
会议日期
July 14, 2024 - July 18, 2024
会议地点
Melbourne, VIC, Australia
会议录编者/会议主办者
Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO)
出版者
摘要
Feature attribution explanation (FAE) method, which reveals the contribution of each input feature to the model's output, is one of the most popular explainable artificial intelligence techniques. To assess the quality of explanations provided by FAE methods, various metrics spanning multiple dimensions have been introduced. However, current FAE approaches often prioritize faithfulness of their explanations, neglecting other crucial aspects. To address this issue, we define the construction of a FAE explainable model as a multi-objective learning problem and propose a framework that simultaneously considers multiple quality metrics during FAE explanation generation. Our experimental results demonstrate that our approach outperforms existing FAE methods in terms of faithfulness, sensitivity, and complexity. Moreover, our method has better diversity and the capacity to offer different explanations for different stakeholders.This paper for the Hot-off-the-Press track at GECCO 2024 summarizes the work Ziming Wang, Changwu Huang, Yun Li, and Xin Yao: Multi-objective Feature Attribution Explanation for Explainable Machine Learning published in ACM Transactions on Evolutionary Learning and Optimization [5].
© 2024 Copyright held by the owner/author(s).
学校署名
第一
语种
英语
收录类别
资助项目
This work was supported by the National Natural Science Foundation of China (Grant No. 62250710682), the Guangdong Provincial Key Laboratory (Grant No. 2020B121201001), the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant No.2017ZT07X386), and the Research Institute of Trustworthy Autonomous Systems.
EI入藏号
20243516939752
EI主题词
Adversarial machine learning ; Federated learning
EI分类号
:1101.2
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/807085
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.Department of Computing and Decision Sciences, Lingnan University, Tuen Mun, Hong Kong
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang, Ziming,Huang, Changwu,Yao, Xin. Feature Attribution Explanation Based on Multi-Objective Evolutionary Learning[C]//Special Interest Group on Genetic and Evolutionary Computation (ACM SIGEVO):Association for Computing Machinery, Inc,2024:61-62.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Ziming]的文章
[Huang, Changwu]的文章
[Yao, Xin]的文章
百度学术
百度学术中相似的文章
[Wang, Ziming]的文章
[Huang, Changwu]的文章
[Yao, Xin]的文章
必应学术
必应学术中相似的文章
[Wang, Ziming]的文章
[Huang, Changwu]的文章
[Yao, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。