中文版 | English
题名

When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications

作者
通讯作者Wu, Xian; Zhao, Xiangyu; Tian, Feng
DOI
发表日期
2024-07-10
会议名称
47th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024
ISBN
9798400704314
会议录名称
页码
1104-1114
会议日期
July 14, 2024 - July 18, 2024
会议地点
Washington, DC, United states
会议录编者/会议主办者
ACM SIGIR
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
The recent surge in Large Language Models (LLMs) has garnered significant attention across numerous fields. Fine-tuning is often required to fit general LLMs for a specific domain, like the web-based healthcare system. However, two problems arise during fine-tuning LLMs for medical applications. One is the task variety problem, which involves distinct tasks in real-world medical scenarios. The variety often leads to sub-optimal fine-tuning for data imbalance and seesaw problems. Besides, the large amount of parameters in LLMs leads to huge time and computation consumption by fine-tuning. To address these two problems, we propose a novel parameter efficient fine-tuning framework for multi-task medical applications, dubbed as MOELoRA. The designed framework aims to absorb both the benefits of mixture-of-expert (MOE) for multi-task learning and low-rank adaptation (LoRA) for parameter efficient fine-tuning. For unifying MOE and LoRA, we devise multiple experts as the trainable parameters, where each expert consists of a pair of low-rank matrices to retain the small size of trainable parameters. Then, a task-motivated gate function for all MOELoRA layers is proposed, which can control the contributions of each expert and produce distinct parameters for various tasks. We conduct experiments on a multi-task medical dataset, indicating MOELoRA outperforms the existing parameter efficient fine-tuning methods. The code is available online.
© 2024 ACM.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
This research was supported by Tencent (CCF-Tencent Open Fund), Research Impact Fund (No.R1015-23), APRC - CityU New Research Initiatives (No.9610565, Start-up Grant for New Faculty of CityU), CityU - HKIDS Early Career Research Grant (No.9360163), Hong Kong ITC Innovation and Technology Fund Midstream Research Programme for Universities Project (No.ITS/034/22MS), Hong Kong Environmental and Conservation Fund (No. 88/2022), SIRG - CityU Strategic Interdisciplinary Research Grant (No.7020046, No.7020074).
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:001273410001018
EI入藏号
20243216839996
EI主题词
Computational linguistics ; Learning systems ; Medical problems
EI分类号
Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
来源库
EV Compendex
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/807090
专题南方科技大学
作者单位
1.Xi'an Jiaotong University, City University of Hong Kong, Xi'an, China
2.Tencent YouTu Lab, Jarvis Research Center, Shenzhen, China
3.City University of Hong Kong, Hong Kong, Hong Kong
4.Southern University of Science and Technology, City University of Hong Kong, Shenzhen, China
5.University of Science and Technology of China, City University of Hong Kong, Hefei, China
6.Xi'an Jiaotong University, Xi'an, China
推荐引用方式
GB/T 7714
Liu, Qidong,Wu, Xian,Zhao, Xiangyu,et al. When MOE Meets LLMs: Parameter Efficient Fine-tuning for Multi-task Medical Applications[C]//ACM SIGIR. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery, Inc,2024:1104-1114.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Qidong]的文章
[Wu, Xian]的文章
[Zhao, Xiangyu]的文章
百度学术
百度学术中相似的文章
[Liu, Qidong]的文章
[Wu, Xian]的文章
[Zhao, Xiangyu]的文章
必应学术
必应学术中相似的文章
[Liu, Qidong]的文章
[Wu, Xian]的文章
[Zhao, Xiangyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。