中文版 | English
题名

BACP: Bayesian Augmented CP Factorization for Traffic Data Imputation

作者
通讯作者Yang, Lili
DOI
发表日期
2024
会议名称
20th International Conference on Intelligent Computing, ICIC 2024
ISSN
0302-9743
EISSN
1611-3349
ISBN
9789819756179
会议录名称
卷号
14874 LNCS
页码
108-120
会议日期
August 5, 2024 - August 8, 2024
会议地点
Tianjin, China
出版地
152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
出版者
摘要
Traffic data possesses spatiotemporal characteristics and encounters missing value problems due to sensor failure in real-world scenarios. Addressing this challenge requires a fast and efficient traffic data imputation method capable of leveraging spatiotemporal information. This paper proposes a Bayesian Augmented CP factorization (BACP) model for the traffic data imputation, which combines the Multiplicative Gamma Process (MGP) with the CP factorization to address the CP rank estimation. Extensive experiment results demonstrate that the BACP model has superior imputation accuracy. Additionally, it offers explicit interpretation of traffic patterns and exhibits lower computational complexity than other Bayesian methods.
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
The authors express their gratitude to the anonymous referees and editors for their valuable insights, which significantly contributed to the enhancement of this paper. Additionally, heartfelt thanks are extended to the authors who shared their codes on websites. This research is supported by the Shenzhen Science and Technology Program (Grant No. ZDSYS20210623092007023), the Educational Commission of Guangdong Province (Grant No. 2021ZDZX1069), and Guangdong Province Universities and Colleges Key Areas of Special Projects (Grant No. 2021222012).
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号
WOS:001307350600010
EI入藏号
20243316880444
EI主题词
Bayesian networks ; Shrinkage
EI分类号
Mathematics:921 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Materials Science:951
来源库
EV Compendex
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/807108
专题南方科技大学
作者单位
1.Shenzhen Key Laboratory of Safety and Security for Next Generation of Industrial Internet, Shenzhen, China
2.Southern University of Science and Technology, Shenzhen; 518055, China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Huang, Rongping,Gong, Wenwu,Lu, Jiaxin,et al. BACP: Bayesian Augmented CP Factorization for Traffic Data Imputation[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:Springer Science and Business Media Deutschland GmbH,2024:108-120.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Rongping]的文章
[Gong, Wenwu]的文章
[Lu, Jiaxin]的文章
百度学术
百度学术中相似的文章
[Huang, Rongping]的文章
[Gong, Wenwu]的文章
[Lu, Jiaxin]的文章
必应学术
必应学术中相似的文章
[Huang, Rongping]的文章
[Gong, Wenwu]的文章
[Lu, Jiaxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。