题名 | BACP: Bayesian Augmented CP Factorization for Traffic Data Imputation |
作者 | |
通讯作者 | Yang, Lili |
DOI | |
发表日期 | 2024
|
会议名称 | 20th International Conference on Intelligent Computing, ICIC 2024
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 9789819756179
|
会议录名称 | |
卷号 | 14874 LNCS
|
页码 | 108-120
|
会议日期 | August 5, 2024 - August 8, 2024
|
会议地点 | Tianjin, China
|
出版地 | 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE
|
出版者 | |
摘要 | Traffic data possesses spatiotemporal characteristics and encounters missing value problems due to sensor failure in real-world scenarios. Addressing this challenge requires a fast and efficient traffic data imputation method capable of leveraging spatiotemporal information. This paper proposes a Bayesian Augmented CP factorization (BACP) model for the traffic data imputation, which combines the Multiplicative Gamma Process (MGP) with the CP factorization to address the CP rank estimation. Extensive experiment results demonstrate that the BACP model has superior imputation accuracy. Additionally, it offers explicit interpretation of traffic patterns and exhibits lower computational complexity than other Bayesian methods. © The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | The authors express their gratitude to the anonymous referees and editors for their valuable insights, which significantly contributed to the enhancement of this paper. Additionally, heartfelt thanks are extended to the authors who shared their codes on websites. This research is supported by the Shenzhen Science and Technology Program (Grant No. ZDSYS20210623092007023), the Educational Commission of Guangdong Province (Grant No. 2021ZDZX1069), and Guangdong Province Universities and Colleges Key Areas of Special Projects (Grant No. 2021222012).
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:001307350600010
|
EI入藏号 | 20243316880444
|
EI主题词 | Bayesian networks
; Shrinkage
|
EI分类号 | Mathematics:921
; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
; Materials Science:951
|
来源库 | EV Compendex
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/807108 |
专题 | 南方科技大学 |
作者单位 | 1.Shenzhen Key Laboratory of Safety and Security for Next Generation of Industrial Internet, Shenzhen, China 2.Southern University of Science and Technology, Shenzhen; 518055, China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Huang, Rongping,Gong, Wenwu,Lu, Jiaxin,et al. BACP: Bayesian Augmented CP Factorization for Traffic Data Imputation[C]. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE:Springer Science and Business Media Deutschland GmbH,2024:108-120.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论