中文版 | English
题名

Skip-patching spatial–temporal discrepancy-based anomaly detection on multivariate time series

作者
发表日期
2024-12-07
DOI
发表期刊
ISSN
0925-2312
EISSN
1872-8286
卷号609
摘要
Anomaly detection in the Industrial Internet of Things (IIoT) is a challenging task that relies heavily on the efficient learning of multivariate time series representations. We introduce Skip-patching and Spatial–Temporal discrepancy mechanisms to improve the efficiency of detecting anomalies. Traditional feature extraction is hindered by redundant information in limited datasets. The situation is that feature generation from stable operational processes results in low-quality representations. To address this challenge, we propose the Skip-Patching mechanism. This approach involves selectively extracting features from partial data patches, prompting the model to learn more meaningful knowledge through self-supervised learning. It also effectively doubles the training sample size by creating independent sub-groups of patches. Despite the complex spatial and temporal relationships in IIoT systems, existing methods mainly extracted features from a single domain, either temporal or spatial (sensor-wise), or simply cascaded two features, i.e., one after one, which limited anomaly detection capabilities. To address this, we introduce the Spatial–Temporal Association Discrepancy component, which leverages discrepancies between spatial and temporal features to enhance latent representation learning. Our Skip-Patching Spatial–Temporal Anomaly Detection (SSAD) framework combines these two components to provide a more diverse and comprehensive learning process. Tested across four multivariate time series anomaly detection benchmarks, SSAD demonstrates superior performance, confirming the efficacy of combining Skip-patching and Spatial–Temporal features to enhance anomaly detection in IIoT systems.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85202540746
来源库
Scopus
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/816495
专题工学院_计算机科学与工程系
南方科技大学
作者单位
1.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,Guangdong,China
2.Department of Computer Science,City University of Hong Kong,Hong Kong,China
3.Shenzhen Key Laboratory of Safety and Security for Next Generation of Industrial Internet,Southern University of Science and Technology,Shenzhen,Guangdong,China
4.College of Artificial Intelligence,China University of Petroleum (Beijing),Beijing,China
5.School of Control Science and Engineering,Shandong University,Jinan,250061,China
6.Key Laboratory of Machine Intelligence and System Control,Ministry of Education,Jinan,China
7.Department of Computing and Decision Sciences,Lingnan University,Hong Kong,China
8.Department of Computer Science,University of Reading,Reading,RG6 6AH,United Kingdom
9.College of Sciences,Northeastern University,Shenyang,110819,China
第一作者单位计算机科学与工程系;  南方科技大学
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xu,Yinsong,Ding,Yulong,Jiang,Jie,等. Skip-patching spatial–temporal discrepancy-based anomaly detection on multivariate time series[J]. Neurocomputing,2024,609.
APA
Xu,Yinsong.,Ding,Yulong.,Jiang,Jie.,Cong,Runmin.,Zhang,Xuefeng.,...&Yang,Shuang Hua.(2024).Skip-patching spatial–temporal discrepancy-based anomaly detection on multivariate time series.Neurocomputing,609.
MLA
Xu,Yinsong,et al."Skip-patching spatial–temporal discrepancy-based anomaly detection on multivariate time series".Neurocomputing 609(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Yinsong]的文章
[Ding,Yulong]的文章
[Jiang,Jie]的文章
百度学术
百度学术中相似的文章
[Xu,Yinsong]的文章
[Ding,Yulong]的文章
[Jiang,Jie]的文章
必应学术
必应学术中相似的文章
[Xu,Yinsong]的文章
[Ding,Yulong]的文章
[Jiang,Jie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。