[1] M. Okuyama and J. Zung. Evaporation—condensation coefficient for smalldroplets. Journal of Chemical Physics, 46:1580–1585, 1967.
[2] A. Khain, T. Prabha, N. Benmoshe, G. Pandithurai, and Mikhail Ovchinnikov.The mechanism of first raindrops formation in deep convective clouds. Journalof Geophysical Research: Atmospheres, 118:9123 – 9140, 2013.
[3] Jing J. Lee, J. Berthier, Kathleen E. Kearney, E. Berthier, and A. Theberge.Open-channel capillary trees and capillary pumping. Langmuir : the ACS jour nal of surfaces and colloids, 2020.
[4] Xuewei Zhang and S. Lorente. Capillary trees for passively pumping water.Journal of Physics D: Applied Physics, 55, 2021.
[5] Philip Ball. Engineering shark skin and other solutions. Nature, 400(6744):507–509, 1999.
[6] Andrew R Parker and Chris R Lawrence. Water capture by a desert beetle.Nature, 414(6859):33–34, 2001.
[7] Wilhelm Barthlott and Christoph Neinhuis. Purity of the sacred lotus, or escapefrom contamination in biological surfaces. Planta, 202:1–8, 1997.
[8] Xuefeng Gao and Lei Jiang. Water-repellent legs of water striders. Nature,432(7013):36–36, 2004.
[9] Tak-Sing Wong, Sung Hoon Kang, Sindy KY Tang, Elizabeth J Smythe,Benjamin D Hatton, Alison Grinthal, and Joanna Aizenberg. Bioinspiredself-repairing slippery surfaces with pressure-stable omniphobicity. Nature,477(7365):443–447, 2011.
[10] Jie Liu, H. Vu, Sam S. Yoon, R. Jepsen, and G. Aguilar. Splashing phenomenaduring liquid droplet impact. Atomization and Sprays, 20:297–310, 2010.
[11] S. R. Werner, Jim R. Jones, A. Paterson, R. Archer, and D. Pearce. Dropletimpact and spreading : Droplet formulation effects. Chemical Engineering Sci ence, 62:2336–2345, 2007.
[12] Xingjian Yu, Yu Zhang, Run Hu, and Xiaobing Luo. Water droplet bouncingdynamics. Nano Energy, 81:105647, 2021.
[13] W. Jia and H. Qiu. Experimental investigation of droplet dynamics and heattransfer in spray cooling. Experimental Thermal and Fluid Science, 27:829–838, 2003.
[14] J. Castrejón-Pita, G. Martin, S. Hoath, and I. Hutchings. A simple large-scaledroplet generator for studies of inkjet printing. The Review of scientific instru ments, 79 7:075108, 2008.
[15] M. A. Ahmad and G. Jabbour. Electronically droplet energy harvesting usingpiezoelectric cantilevers. Electronics Letters, 48:647–649, 2012.
[16] Qiu Chao, L. Meng, and Shu xian Chen. Anti-icing characteristics of ptfe superhydrophobic coating on titanium alloy surface. Journal of Alloys and Com pounds, page 157907, 2020.
[17] Jun-Heng Fu, Tianying Liu, Yuntao Cui, and Jing Liu. Interfacial engineeringof room temperature liquid metals. Advanced Materials Interfaces, 8, 2021.
[18] Jun-Heng Fu, Chenglin Zhang, Tianying Liu, and Jing Liu. Room temperatureliquid metal: its melting point, dominating mechanism and applications. Fron tiers in Energy, 14:81–104, 2020.
[19] Yu Ding, Xuelin Guo, Yumin Qian, Leigang Xue, A. Dolocan, and Guihua Yu.Room-temperature all-liquid-metal batteries based on fusible alloys with regu lated interfacial chemistry and wetting. Advanced Materials, 32, 2020.
[20] Tingyi Liu, Prosenjit Sen, and Chang-Jin Kim. Characterization of nontoxicliquid-metal alloy galinstan for applications in microdevices. Journal of Micro electromechanical Systems, 21(2):443–450, 2011.
[21] C. Driscoll, R. Mason, H. Chan, D. Jacob, and N. Pirrone. Mercury as a globalpollutant: Sources, pathways, and effects. Environmental Science & Technol ogy, 47:4967 – 4983, 2013.
[22] T. Yokokawa and O. J. Kleppa. Heats of mixing in binary-liquid—alkali-metalmixtures. Journal of Chemical Physics, 40:46–54, 1964.
[23] M. G. Kim and S. Letcher. Ultrasonic velocity and absorption in liquid mixturesof k-rb and na-cs. Journal of Chemical Physics, 55:1164–1170, 1971.
[24] Philip Ball. Sodium’s explosive secrets revealed. Nature, 2015.
[25] Philip E Mason, Frank Uhlig, Václav Vaněk, Tillmann Buttersack, SigurdBauerecker, and Pavel Jungwirth. Coulomb explosion during the early stages ofthe reaction of alkali metals with water. Nature chemistry, 7(3):250–254, 2015.
[26] Megan A Creighton, Michelle C Yuen, Michael A Susner, Zachary Farrell, BenjiMaruyama, and Christopher E Tabor. Oxidation of gallium-based liquid metalalloys by water. Langmuir, 36(43):12933–12941, 2020.
[27] M. A. H. Khondoker and D. Sameoto. Fabrication methods and applications ofmicrostructured gallium based liquid metal alloys. Smart Materials and Struc tures, 25, 2016.
[28] Michael D Dickey. Emerging applications of liquid metals featuring surfaceoxides. ACS applied materials & interfaces, 6(21):18369–18379, 2014.
[29] https://en.wikipedia.org/wiki/Gallium.
[30] Ali Zavabeti, Jian Zhen Ou, Benjamin J Carey, Nitu Syed, Rebecca Orrell-Trigg,Edwin LH Mayes, Chenglong Xu, Omid Kavehei, Anthony P O’Mullane, andRichard B Kaner. A liquid metal reaction environment for the room-temperaturesynthesis of atomically thin metal oxides. Science, 358(6361):332–335, 2017.
[31] Patricia Berger, Nicholas B Adelman, Katie J Beckman, Dean J Campbell,Arthur B Ellis, and George C Lisensky. Preparation and properties of an aqueousferrofluid. Journal of chemical education, 76(7):943, 1999.
[32] Xiaoxuan Zhang, Lingyu Sun, Yunru Yu, and Yuanjin Zhao. Flexible ferrofluids:Design and applications. Advanced Materials, 31, 2019.
[33] I. Torres-Díaz and C. Rinaldi. Recent progress in ferrofluids research: novelapplications of magnetically controllable and tunable fluids. Soft matter, 1043:8584–602, 2014.
[34] Madhusree Kole and Sameer Khandekar. Engineering applications of ferroflu ids: A review. Journal of Magnetism and Magnetic Materials, 537:168222,2021.
[35] Yoav Tsori. Polymers, liquids and colloids in electric fields: interfacial insta bilities, orientation and phase transitions, volume 2. World Scientific, 2009.
[36] Solomon Stephen Papell. Low viscosity magnetic fluid obtained by the colloidalsuspension of magnetic particles patent. 1965.
[37] R. Weiss, J. Schifter, L. Borduz, and K. Raj. Ferrofluid studies of recordeddata and defect identification in small high-performance rigid discs. Journal ofApplied Physics, 57:4274–4276, 1985.
[38] R. E. Rosensweig, Y. Hirota, S. Tsuda, and K. Raj. Study of audio speakerscontaining ferrofluid. Journal of Physics: Condensed Matter, 20:204147, 2008.
[39] Moo-Yeon Lee, Hyung-Jin Kim, and Woo-Hee Lee. Numerical analysis ontemperature characteristics of the voice-coil for woofer speaker using ferrofluid.Journal of Korean Medical Science, 23:166–172, 2013
[40] Thomas Young. Iii. an essay on the cohesion of fluids. Philosophical transac tions of the royal society of London, (95):65–87, 1805.
[41] ABD Cassie and SJToTFS Baxter. Wettability of porous surfaces. Transactionsof the Faraday society, 40:546–551, 1944.
[42] K. Kubiak, M. Wilson, T. Mathia, and P. Carval. Wettability versus roughnessof engineering surfaces. Wear, 271:523–528, 2011.
[43] H. Nakae, Ryuichi Inui, Y. Hirata, and H. Saito. Effects of surface roughness onwettability. Acta Materialia, 46:2313–2318, 1998.
[44] R. Lipowsky. Morphological wetting transitions at chemically structured sur faces. Current Opinion in Colloid and Interface Science, 6:40–48, 2001.
[45] S. Grant and A. Salehzadeh. Calculation of temperature effects on wetting coef ficients of porous solids and their capillary pressure functions. Water ResourcesResearch, 32:261–270, 1996.
[46] E. Guillen-Burrieza, M. Mavukkandy, M. Bilad, and H. Arafat. Understandingwetting phenomena in membrane distillation and how operational parameterscan affect it. Journal of Membrane Science, 515:163–174, 2016.
[47] Jiadao Wang, Shuai Chen, and Darong Chen. Spontaneous transition of a waterdroplet from the wenzel state to the cassie state: a molecular dynamics sim ulation study. Physical chemistry chemical physics : PCCP, 17 45:30533–9,2015.
[48] V. Bahadur and S. Garimella. Preventing the cassie-wenzel transition using sur faces with noncommunicating roughness elements. Langmuir : the ACS journalof surfaces and colloids, 25 8:4815–20, 2009.
[49] E. Bormashenko, R. Pogreb, G. Whyman, and Mordehai Erlich. Resonancecassie-wenzel wetting transition for horizontally vibrated drops deposited ona rough surface. Langmuir : the ACS journal of surfaces and colloids, 2324:12217–21, 2007.
[50] L. Gao and T. J. McCarthy. Contact angle hysteresis explained. Langmuir : theACS journal of surfaces and colloids, 22 14:6234–7, 2006.
[51] A. Hennig, K. Eichhorn, U. Staudinger, K. Sahre, M. Rogalli, M. Stamm,A. Neumann, and K. Grundke. Contact angle hysteresis: study by dynamiccycling contact angle measurements and variable angle spectroscopic ellipsom etry on polyimide. Langmuir : the ACS journal of surfaces and colloids, 2016:6685–91, 2004.
[52] E. Chibowski. Surface free energy of a solid from contact angle hysteresis.Advances in colloid and interface science, 103 2:149–72, 2003.
[53] Tsuyoshi Hattori and Seiichi Koshizuka. Numerical simulation of droplet be havior on an inclined plate using the moving particle semi-implicit method. Me chanical Engineering Journal, 6(5):19–00204, 2019.
[54] P Haines and J Luers. Aerodynamic penalties of heavy rain on landing airplanes.Journal of Aircraft, 20(2):111–119, 1983.
[55] Brian Derby. Inkjet printing of functional and structural materials: fluid prop erty requirements, feature stability, and resolution. Annual Review of MaterialsResearch, 40:395–414, 2010.
[56] Romain Rioboo, Cameron Tropea, and Marco Marengo. Outcomes from a dropimpact on solid surfaces. Atomization and sprays, 11(2), 2001.
[57] Yifan Si, Zhichao Dong, and Lei Jiang. Bioinspired designs of superhydropho bic and superhydrophilic materials. ACS Central Science, 4(9):1102–1112,2018.
[58] Lin Feng, Shuhong Li, Yingshun Li, Huan-Jun Li, Lingjuan Zhang, Jin Zhai,Yanlin Song, Biqian Liu, Lei Jiang, and Daoben Zhu. Super-hydrophobic sur faces: From natural to artificial. Advanced Materials, 2002.
[59] Zhenyu Xi, You yi Xu, Li ping Zhu, Yue Wang, and Bao ku Zhu. A facilemethod of surface modification for hydrophobic polymer membranes based onthe adhesive behavior of poly(dopa) and poly(dopamine). Journal of MembraneScience, 327:244–253, 2009.
[60] Pieter van der Wal and U. Steiner. Super-hydrophobic surfaces made fromteflon. Soft matter, 3 4:426–429, 2007.
[61] Y.Y. Yan, N. Gao, and W. Barthlott. Mimicking natural superhydrophobic sur faces and grasping the wetting process: A review on recent progress in prepar ing superhydrophobic surfaces. Advances in Colloid and Interface Science,169(2):80–105, 2011.
[62] Marouen Ben Said, M. Selzer, B. Nestler, Daniel Braun, C. Greiner, and H. Gar cke. A phase-field approach for wetting phenomena of multiphase dropletson solid surfaces. Langmuir : the ACS journal of surfaces and colloids, 3014:4033–9, 2014.
[63] A. Carlson, M. Do-Quang, and G. Amberg. Dissipation in rapid dynamic wet ting. Journal of Fluid Mechanics, 682:213 – 240, 2011.
[64] A. Mejía and L. Vega. Perfect wetting along a three-phase line: theoryand molecular dynamics simulations. The Journal of chemical physics, 12424:244505, 2006.
[65] Antonin Marchand, Siddhartha Das, Jacco H Snoeijer, and Bruno Andreotti.Contact angles on a soft solid: From young’s law to neumann’s law. Physicalreview letters, 109(23):236101, 2012.
[66] J David Smith, Rajeev Dhiman, Sushant Anand, Ernesto Reza-Garduno,Robert E Cohen, Gareth H McKinley, and Kripa K Varanasi. Droplet mobil ity on lubricant-impregnated surfaces. Soft Matter, 9(6):1772–1780, 2013.
[67] Faze Chen, Yaquan Wang, Yanling Tian, Dawei Zhang, Jinlong Song, Colin R.Crick, Claire J. Carmalt, Ivan P. Parkin, and Yao Lu. Robust and durable liquid repellent surfaces. Chem. Soc. Rev., 51:8476–8583, 2022.
[68] Hans-Jürgen Butt, Jie Liu, Kaloian Koynov, Benedikt Straub, Chirag Hinduja,Ilia Roismann, Rüdiger Berger, Xiaomei Li, Doris Vollmer, and Werner Stef fen. Contact angle hysteresis. Current Opinion in Colloid & Interface Science,59:101574, 2022.
[69] Chonglei Hao, Jing Li, Yuan Liu, Xiaofeng Zhou, Yahua Liu, Rong Liu,Lufeng Che, Wenzhong Zhou, Dong Sun, Lawrence Li, and Zuankai Wang.Superhydrophobic-like tunable droplet bouncing on slippery liquid interfaces.Nature communications, 6(1):7986, 2015.
[70] Chonglei Hao, Yahua Liu, Xuemei Chen, Jing Li, Mei Zhang, Yanhua Zhao, andZuankai Wang. Bioinspired interfacial materials with enhanced drop mobility:From fundamentals to multifunctional applications. Small, 12(14):1825–1839,2016.
[71] Wanghuai Xu, Xiaofeng Zhou, Chonglei Hao, Huanxi Zheng, Yuan Liu, Xi antong Yan, Zhengbao Yang, Michael Leung, Xiao Cheng Zeng, Ronald X Xu,and Zuankai Wang. Slips-teng: robust triboelectric nanogenerator with opticaland charge transparency using a slippery interface. National science review,6(3):540–550, 2019.
[72] Chaoqun Shen, Cheng Yu, and Yongping Chen. Spreading dynamics ofdroplet on an inclined surface. Theoretical and Computational Fluid Dynamics,30:237–252, 2016.
[73] A. Carlson, M. Do-Quang, and G. Amberg. Droplet dynamics in a bifurcatingchannel. International Journal of Multiphase Flow, 36:397–405, 2010.
[74] B. Maneshian, K. Javadi, M. T. Rahni, and R. Miller. Droplet dynamics inrotating flows. Advances in colloid and interface science, 236:63–82, 2016.
[75] Shiji Lin, Bin Li, Yi Xu, A. A. Mehrizi, and Longquan Chen. Effective strategiesfor droplet transport on solid surfaces. Advanced Materials Interfaces, 8, 2020.
[76] Mahdi Nasiri, G. Amini, C. Moreau, and A. Dolatabadi. Hollow droplet impacton a solid surface. International Journal of Multiphase Flow, 143:103740, 2021.
[77] B. Devenish, P. Bartello, J. Brenguier, L. Collins, W. Grabowski, R. Ijzermans,S. Malinowski, M. Reeks, J. C. Vassilicos, Lian-Ping Wang, and Z. Warhaft.Droplet growth in warm turbulent clouds. Quarterly Journal of the Royal Me teorological Society, 138, 2012.
[78] Ching hua Wang and Gwo-Jiun Ueng. An experimental investigation of fueldroplet combustion under micro-gravity. International Communications in Heatand Mass Transfer, 24:931–944, 1997.
[79] Xing Han, Jiaqian Li, Xin Tang, Wei Li, Haibo Zhao, Ling Yang, and LiqiuWang. Droplet bouncing: Fundamentals, regulations, and applications. Small,18(22):2200277, 2022.
[80] Ko Okumura, Frédéric Chevy, Denis Richard, David Quéré, and ChristopheClanet. Water spring: A model for bouncing drops. Europhysics Letters,62(2):237, 2003.
[81] Anne-Laure Biance, Frédéric Chevy, Christophe Clanet, Guillaume Lagubeau,and David Quéré. On the elasticity of an inertial liquid shock. Journal of FluidMechanics, 554:47–66, 2006.
[82] Denis Richard, Christophe Clanet, and David Quéré. Contact time of a bouncingdrop. Nature, 417(6891):811–811, 2002.
[83] Anaïs Gauthier, Sean Symon, Christophe Clanet, and David Quéré. Wa ter impacting on superhydrophobic macrotextures. Nature communications,6(1):8001, 2015.
[84] Lisa Moevius, Yahua Liu, Zuankai Wang, and Julia M Yeomans. Pancakebouncing: simulations and theory and experimental verification. Langmuir,30(43):13021–13032, 2014.
[85] Yahua Liu, Lisa Moevius, Xinpeng Xu, Tiezheng Qian, Julia M Yeomans,and Zuankai Wang. Pancake bouncing on superhydrophobic surfaces. Naturephysics, 10(7):515–519, 2014.
[86] Shuaijun Pan, Rui Guo, Joseph J Richardson, Joseph D Berry, Quinn A Besford,Mattias Björnmalm, Gyeongwon Yun, Ruoxi Wu, Zhixing Lin, Qi-Zhi Zhong,et al. Ricocheting droplets moving on super-repellent surfaces. Advanced Sci ence, 6(21):1901846, 2019.
[87] Zong-Hong Lin, Gang Cheng, Sangmin Lee, Ken C Pradel, and Zhong LinWang. Harvesting water drop energy by a sequential contact-electrification andelectrostatic-induction process. Adv. Mater, 26(27):4690–4696, 2014.
[88] Feng Jiang, Liuxiang Zhan, Jin Pyo Lee, and Pooi See Lee. Triboelectric nano generators based on fluid medium: From fundamental mechanisms toward mul tifunctional applications. Advanced Materials, 36(6):2308197, 2024.
[89] Wanghuai Xu, Huanxi Zheng, Yuan Liu, Xiaofeng Zhou, Chao Zhang, YuxinSong, Xu Deng, Michael Leung, Zhengbao Yang, Ronald X Xu, et al. Adroplet-based electricity generator with high instantaneous power density. Na ture, 578(7795):392–396, 2020.
[90] Peng Wang, Ziqiang Li, Qing Xie, Wei Duan, Xinchun Zhang, and Huilong Han.A passive anti-icing strategy based on a superhydrophobic mesh with extremelylow ice adhesion strength. Journal of Bionic Engineering, 18:55–64, 2021.
[91] SA Kulinich and M Farzaneh. How wetting hysteresis influences ice adhesionstrength on superhydrophobic surfaces. Langmuir, 25(16):8854–8856, 2009.
[92] Dilip K Sarkar and Masoud Farzaneh. Superhydrophobic coatings with reducedice adhesion. Journal of Adhesion Science and Technology, 23(9):1215–1237,2009.
[93] Ludmila Boinovich, Alexandre M Emelyanenko, Vadim V Korolev, and An drei S Pashinin. Effect of wettability on sessile drop freezing: when super hydrophobicity stimulates an extreme freezing delay. Langmuir, 30(6):1659–1668, 2014.
[94] Chen Tianhua, Liu Zhaoxuan, Han Qun, and Wenming Li Chengbin Zhang. Re search progress and influencing factors of the heat transfer enhancement of spraycooling. CIESC Journal, 74(8):3149, 2023.
[95] Zhaochang Wang, Xiaojun Liu, Jiawei Ji, Yuhang Guo, Yongqing Zhu, Guo tao Zhang, Baohong Tong, Yunlong Jiao, and Kun Liu. Suppressed dropletsplashing on positively skewed surfaces for high-efficiency evaporation cool ing. Small, page 2307759, 2024.
[96] Detlef Lohse. Fundamental fluid dynamics challenges in inkjet printing. Annualreview of fluid mechanics, 54:349–382, 2022.
[97] Michael D Dickey. Stretchable and soft electronics using liquid metals. Ad vanced materials, 29(27):1606425, 2017.
[98] Rui Chen, Qin Xiong, Rui-Zhou Song, Kai-Lin Li, Yu-Xin Zhang, Cheng Fang,and Jiang-Long Guo. Magnetically controllable liquid metal marbles. AdvancedMaterials Interfaces, 6(20):1901057, 2019.
[99] Adam C Siegel, Scott T Phillips, Michael D Dickey, Nanshu Lu, Zhigang Suo,and George M Whitesides. Foldable printed circuit boards on paper substrates.Advanced Functional Materials, 20(1):28–35, 2010.
[100] Collin Ladd, Ju-Hee So, John Muth, Michael D Dickey, et al. 3d printing of freestanding liquid metal microstructures. Adv. Mater, 25(36):5081–5085, 2013.
[101] Yi Zheng, Zhizhu He, Yunxia Gao, and Jing Liu. Direct desktop printed-circuits on-paper flexible electronics. Scientific reports, 3(1):1786, 2013.
[102] Sen Chen, Hongzhang Wang, Ruiqi Zhao, Wei Rao, and Jing Liu. Liquid metalcomposites. Matter, 2(6):1446–1480, 2020.
[103] Sen Chen and Jing Liu. Liquid metal enabled unconventional heat and flowtransfer. ES Energy & Environment, 5(3):8–21, 2019.
[104] Jolet De Ruiter, Rudy Lagraauw, Dirk Van Den Ende, and Frieder Mugele.Wettability-independent bouncing on flat surfaces mediated by thin air films.Nature physics, 11(1):48–53, 2015.
[105] Thomas M Schutzius, Stefan Jung, Tanmoy Maitra, Gustav Graeber, MoritzKöhme, and Dimos Poulikakos. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature, 527(7576):82–85, 2015.
[106] Anja Habenicht, Michael Olapinski, Frank Burmeister, Paul Leiderer, and Johannes Boneberg. Jumping nanodroplets. Science, 309(5743):2043–2045, 2005.
[107] S Afkhami and L Kondic. Numerical simulation of ejected molten metalnanoparticles liquified by laser irradiation: Interplay of geometry and dewet ting. Physical review letters, 111(3):034501, 2013.
[108] Stephan Handschuh-Wang, Tiansheng Gan, Tao Wang, Florian J Stadler, andXuechang Zhou. Surface tension of the oxide skin of gallium-based liquid met als. Langmuir, 37(30):9017–9025, 2021.
[109] Chenglin Zhang, Lei Li, Zhaobing Li, Hao Chang, and Jing Liu. Investigation onthe spreading and solidification of supercooled gallium droplets during impact.International Journal of Heat and Mass Transfer, 183:122142, 2022.
[110] Michael D Dickey, Ryan C Chiechi, Ryan J Larsen, Emily A Weiss, David AWeitz, and George M Whitesides. Eutectic gallium-indium (egain): a liquidmetal alloy for the formation of stable structures in microchannels at room tem perature. Advanced functional materials, 18(7):1097–1104, 2008.
[111] F Scharmann, G Cherkashinin, V Breternitz, Ch Knedlik, G Hartung, Th Weber,and JA Schaefer. Viscosity effect on gainsn studied by xps. Surface and InterfaceAnalysis: An International Journal devoted to the development and applicationof techniques for the analysis of surfaces, interfaces and thin films, 36(8):981–985, 2004.
[112] Ryan C Chiechi, Emily A Weiss, Michael D Dickey, and George M Whitesides.Eutectic gallium–indium (egain): a moldable liquid metal for electrical char acterization of self-assembled monolayers. Angewandte Chemie InternationalEdition, 47(1):142–144, 2008.
[113] Kyle Doudrick, Shanliangzi Liu, Eva M Mutunga, Kate L Klein, Viraj Damle,Kripa K Varanasi, and Konrad Rykaczewski. Different shades of oxide: Fromnanoscale wetting mechanisms to contact printing of gallium-based liquid met als. Langmuir, 30(23):6867–6877, 2014.
[114] Mohammad Rashed Khan, Collin B Eaker, Edmond F Bowden, and Michael DDickey. Giant and switchable surface activity of liquid metal via surface oxida tion. Proceedings of the National Academy of Sciences, 111(39):14047–14051,2014.
[115] Xiao-Hu Yang and Jing Liu. Advances in liquid metal science and technologyin chip cooling and thermal management. In Advances in Heat Transfer, vol ume 50, pages 187–300. Elsevier, 2018.
[116] Seung Hee Jeong, Anton Hagman, Klas Hjort, Magnus Jobs, Johan Sundqvist,and Zhigang Wu. Liquid alloy printing of microfluidic stretchable electronics.Lab on a Chip, 12(22):4657–4664, 2012.
[117] Hongzhang Wang, Sen Chen, Bo Yuan, Jing Liu, and Xuyang Sun. Liquid metaltransformable machines. Accounts of Materials Research, 2(12):1227–1238,2021.
[118] Kyungsuk Yum and Min-Feng Yu. Measurement of wetting properties of in dividual boron nitride nanotubes with the wilhelmy method using a nanotube based force sensor. Nano letters, 6(2):329–333, 2006.
[119] Xiong Wang, Qi Min, Zhengming Zhang, Yuanyuan Duan, Yuning Zhang, andJunpeng Zhai. Influence of head resistance force and viscous friction on dynamiccontact angle measurement in wilhelmy plate method. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 527:115–122, 2017.
[120] Qin Xu, Nikolai Oudalov, Qiti Guo, Heinrich M Jaeger, and Eric Brown. Effectof oxidation on the mechanical properties of liquid gallium and eutectic gallium indium. Physics of fluids, 24(6), 2012.
[121] Muhammad Yunusa, Guillermo J Amador, Dirk-M Drotlef, and Metin Sitti.Wrinkling instability and adhesion of a highly bendable gallium oxide nanofilmencapsulating a liquid-gallium droplet. Nano Letters, 18(4):2498–2504, 2018.
[122] Edward Bormashenko, Roman Pogreb, Gene Whyman, Albina Musin, YelenaBormashenko, and Zahava Barkay. Shape, vibrations, and effective surface ten sion of water marbles. Langmuir, 25(4):1893–1896, 2009.
[123] Glen McHale, SJ Elliott, MI Newton, DL Herbertson, and KADİR Esmer.Levitation-free vibrated droplets: resonant oscillations of liquid marbles. Lang muir, 25(1):529–533, 2009.
[124] Madhav Mani, Shreyas Mandre, and Michael P Brenner. Events before dropletsplashing on a solid surface. Journal of Fluid Mechanics, 647:163–185, 2010.
[125] Nathan Blanken, Muhammad Saeed Saleem, Carlo Antonini, and Marie-JeanThoraval. Rebound of self-lubricating compound drops. Science advances,6(11):eaay3499, 2020.
[126] JK Angarska, BS Dimitrova, KD Danov, PA Kralchevsky, KP Ananthapad manabhan, and A Lips. Detection of the hydrophobic surface force in foamfilms by measurements of the critical thickness of the film rupture. Langmuir,20(5):1799–1806, 2004.
[127] R-H Yoon and JL Yordan. The critical rupture thickness of thin water films onhydrophobic surfaces. Journal of colloid and interface science, 146(2):565–572,1991.
[128] J Mahnke, HJ Schulze, KW Stöckelhuber, and B Radoev. Rupture of thin wet ting films on hydrophobic surfaces: Part i: methylated glass surfaces. Colloidsand Surfaces A: Physicochemical and Engineering Aspects, 157(1-3):1–9, 1999.
[129] Rui Guo, Xuyang Sun, Bo Yuan, Hongzhang Wang, and Jing Liu. Magneticliquid metal (fe-egain) based multifunctional electronics for remote self-healingmaterials, degradable electronics, and thermal transfer printing. Advanced Sci ence, 6(20):1901478, 2019.
[130] Yujie Ding and Jing Liu. Water film coated composite liquid metal marble andits fluidic impact dynamics phenomenon. Frontiers in Energy, 10:29–36, 2016.
[131] Jie Zhang, Youyou Yao, Lei Sheng, and Jing Liu. Self-fueled biomimetic liquidmetal mollusk. Advanced Materials, 27(16):2648–2655, 2015.
[132] Rebecca K Kramer, J William Boley, Howard A Stone, James C Weaver, andRobert J Wood. Effect of microtextured surface topography on the wetting be havior of eutectic gallium–indium alloys. Langmuir, 30(2):533–539, 2014.
[133] Mohammad R Khan, Chris Trlica, Ju-Hee So, Michael Valeri, and Michael DDickey. Influence of water on the interfacial behavior of gallium liquid metalalloys. ACS applied materials & interfaces, 6(24):22467–22473, 2014.
[134] Bingqiang Ji, Zhengyu Yang, and Jie Feng. Compound jetting from bubblebursting at an air-oil-water interface. Nature communications, 12(1):6305, 2021.
[135] Anne D Dussaud and Sandra M Troian. Dynamics of spontaneous spreadingwith evaporation on a deep fluid layer. Physics of Fluids, 10(1):23–38, 1998.
[136] James A Fay. The spread of oil slicks on a calm sea. In Oil on the Sea: Pro ceedings of a symposium on the scientific and engineering aspects of oil pollu tion of the sea, sponsored by Massachusetts Institute of Technology and WoodsHole Oceanographic Institution and held at Cambridge, Massachusetts, May16, 1969, pages 53–63. Springer, 1969.
[137] Sander Wildeman, Claas Willem Visser, Chao Sun, and Detlef Lohse. On thespreading of impacting drops. Journal of fluid mechanics, 805:636–655, 2016.
[138] Elliot W Hawkes, Charles Xiao, Richard-Alexandre Peloquin, ChristopherKeeley, Matthew R Begley, Morgan T Pope, and Günter Niemeyer. Engi neered jumpers overcome biological limits via work multiplication. Nature,604(7907):657–661, 2022.
[139] Tian-Ying Liu, Dong-Dong Li, Jiao Ye, Qian Li, Lei Sheng, and Jing Liu. Anintegrated soft jumping robotic module based on liquid metals. Advanced Engi neering Materials, 23(12):2100515, 2021.
[140] Oscar Oehlsen, Sussy I. Cervantes-Ramírez, Pabel A. Cervantes-Avilés, andI. Medina-Velo. Approaches on ferrofluid synthesis and applications: Currentstatus and future perspectives. ACS Omega, 7:3134 – 3150, 2022.
[141] Seval Genç and B. Derin. Synthesis and rheology of ferrofluids: a review. Cur rent opinion in chemical engineering, 3:118–124, 2014.
[142] S Sudo, M Funaoka, H Nishiyama, and K Katagiri. The effect of target rough ness on the impact phenomena of magnetic fluid drops. Energy conversion andmanagement, 43(3):289–297, 2002.
[143] S Sudo, M Funaoka, and H Nishiyama. Sequential impact of two magnetic fluiddroplets on a paper surface. Journal of magnetism and magnetic materials,252:283–286, 2002.
[144] S Sudo, N Wakamatsu, T Ikohagi, H Nishiyama, M Ohaba, and K Katagiri. Mag netic field effects in the impact of a magnetic fluid drop. Journal of magnetismand magnetic materials, 201(1-3):285–289, 1999.
[145] Shai Rahimi and Daniel Weihs. Experimental investigation of magneto rheological droplet impact on a smooth surface. Journal of magnetism andmagnetic materials, 321(19):3178–3182, 2009.
[146] Abrar Ahmed, Brian A Fleck, and Prashant R Waghmare. Maximum spreadingof a ferrofluid droplet under the effect of magnetic field. Physics of Fluids,30(7), 2018.
[147] Jiandong Zhou and Dengwei Jing. Effects of vertical magnetic field on impactdynamics of ferrofluid droplet onto a rigid substrate. Physical Review Fluids,4(8):083602, 2019.
[148] Nilamani Sahoo, Purbarun Dhar, and Devranjan Samanta. Vertical magneticfield aided droplet-impact-magnetohydrodynamics of ferrofluids. Colloids andSurfaces A: Physicochemical and Engineering Aspects, 633:127872, 2022.
[149] Selin Manukyan and Marius Schneider. Experimental investigation of wettingwith magnetic fluids. Langmuir, 32(20):5135–5140, 2016.
[150] Abrar Ahmed, Ahmed Jawad Qureshi, Brian A Fleck, and Prashant R Wagh mare. Effects of magnetic field on the spreading dynamics of an impingingferrofluid droplet. Journal of colloid and interface science, 532:309–320, 2018.
[151] Huizeng Li, Wei Fang, Yanan Li, Qiang Yang, Mingzhu Li, Qunyang Li, Xi Qiao Feng, and Yanlin Song. Spontaneous droplets gyrating via asymmetricself-splitting on heterogeneous surfaces. Nature Communications, 10(1):950,2019.
[152] Tristan Gilet and John WM Bush. Droplets bouncing on a wet, inclined surface.Physics of Fluids, 24(12), 2012.
[153] Yong Han Yeong, James Burton, Eric Loth, and Ilker S Bayer. Drop impactand rebound dynamics on an inclined superhydrophobic surface. Langmuir,30(40):12027–12038, 2014.
[154] Š Šikalo, C Tropea, and EN Ganić. Impact of droplets onto inclined surfaces.Journal of colloid and interface science, 286(2):661–669, 2005.
[155] Carlo Antonini, Fabio Villa, and Marco Marengo. Oblique impacts of waterdrops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, andrebound maps. Experiments in fluids, 55:1–9, 2014.
[156] Haibo Zhao, Xing Han, Jiayu Li, Wei Li, Tao Huang, Peng Yu, and Liqiu Wang.Numerical investigation of a droplet impacting obliquely on a horizontal solidsurface. Physical Review Fluids, 7(1):013601, 2022.
[157] H Almohammadi and A Amirfazli. Understanding the drop impact on movinghydrophilic and hydrophobic surfaces. Soft Matter, 13(10):2040–2053, 2017.
[158] K Ashoke Raman. Normal and oblique droplet impingement dynamics on mov ing dry walls. Physical Review E, 99(5):053108, 2019.
[159] Anaïs Gauthier, Ambre Bouillant, Christophe Clanet, and David Quéré. Aero dynamic repellency of impacting liquids. Physical Review Fluids, 3(5):054002,2018.
[160] Xuan Zhang, Zhibing Zhu, Chaoyang Zhang, and Chun Yang. Reduced contacttime of a droplet impacting on a moving superhydrophobic surface. AppliedPhysics Letters, 117(15), 2020.
[161] Haiyang Zhan, Chenguang Lu, Cong Liu, Zuankai Wang, Cunjing Lv, andYahua Liu. Horizontal motion of a superhydrophobic substrate affects the dropbouncing dynamics. Physical Review Letters, 126(23):234503, 2021.
[162] Haibo Zhao, Qiyu Deng, Tao Huang, Pingan Zhu, Wei Li, Xing Han, Xiang Li,Liqiu Wang, and Peng Yu. Magnetic field-assisted fission of a ferrofluid dropletfor large-scale droplet generation. Langmuir, 38(18):5838–5846, 2022.
[163] Christophe Clanet, Cédric Béguin, Denis Richard, and David Quéré. Maximaldeformation of an impacting drop. Journal of Fluid Mechanics, 517:199–208,2004.
[164] Timur M Batrudinov, Yuliya E Nekhoroshkova, Egor I Paramonov, Vladimir SZverev, Ekaterina A Elfimova, Alexey O Ivanov, and Philip J Camp. Dynamicmagnetic response of a ferrofluid in a static uniform magnetic field. PhysicalReview E, 98(5):052602, 2018.
[165] N. G. J. Gui, C. Stanley, Nam-Trung Nguyen, and G. Rosengarten. Ferrofluidsfor heat transfer enhancement under an external magnetic field. InternationalJournal of Heat and Mass Transfer, 2018.
[166] M. Rajňák, B. Dolník, Patrik Hodermarsky, K. Paulovičová, R. Cimbala,M. Timko, and P. Kopčanský. Dynamic magnetic response of ferrofluids undera static electric field. Physics of Fluids, 2021.
[167] C. Oldenburg, S. Borglin, and G. Moridis. Numerical simulation of fer rofluid flow for subsurface environmental engineering applications. Transportin Porous Media, 38:319–344, 2000.
[168] Han Shao, Libo Huang, and D. Michels. A current loop model for the fastsimulation of ferrofluids. IEEE Transactions on Visualization and ComputerGraphics, 29:5394–5405, 2022.
[169] Libo Huang, Torsten Hädrich, and D. Michels. On the accurate large-scale sim ulation of ferrofluids. ACM Transactions on Graphics (TOG), 38:1 – 15, 2019.
[170] Jing Liu, Yit Fatt Yap, and Nam-Trung Nguyen. Numerical study of the forma tion process of ferrofluid droplets. Physics of Fluids, 23(7), 2011.
[171] Yining Wu, Taotao Fu, Youguang Ma, and Huai Z Li. Ferrofluid droplet forma tion and breakup dynamics in a microfluidic flow-focusing device. Soft Matter,9(41):9792–9798, 2013.
[172] Zhaoyi Wang, Ran Tao, Jun Wu, Bing Li, and Chonglei Hao. Impingement assisted self-assembly of ferrofluid droplets under magnetic field. AppliedPhysics Letters, 119(4), 2021.
[173] Wellington C Jesus, Alexandre M Roma, and Hector D Ceniceros. Deforma tion of a sheared magnetic droplet in a viscous fluid. Commun. Comput. Phys,24(2):332–355, 2018.
[174] S Bulent Biner. Programming phase-field modeling. Springer, 2017.
[175] Nikolas Provatas and Ken Elder. Phase-field methods in materials science andengineering. John Wiley & Sons, 2011.
[176] Qiao Wang, Geng Zhang, Yajie Li, Zijian Hong, Da Wang, and Siqi Shi. Ap plication of phase-field method in rechargeable batteries. npj ComputationalMaterials, 6(1):176, 2020.
[177] Junseok Kim. Phase-field models for multi-component fluid flows. Communi cations in Computational Physics, 12:613–661, 2012.
[178] Junseok Kim. Phase field computations for ternary fluid flows. Computer Meth ods in Applied Mechanics and Engineering, 196:4779–4788, 2007.
[179] D.R Liles and Wm.H Reed. A semi-implicit method for two-phase fluid dynam ics. Journal of Computational Physics, 26:390–407, 1978.
[180] Jie Shen and Xiaofeng Yang. Numerical approximations of allen-cahn and cahn hilliard equations. Discrete Contin. Dyn. Syst, 28(4):1669–1691, 2010.
[181] Shuwei Zhou, Timon Rabczuk, and Xiaoying Zhuang. Phase field modeling ofquasi-static and dynamic crack propagation: Comsol implementation and casestudies. Advances in Engineering Software, 122:31–49, 2018.
[182] S. Klainerman and A. Majda. Compressible and incompressible fluids. Com munications on Pure and Applied Mathematics, 35:629–651, 1982.
[183] Samira Shiri and James C Bird. Heat exchange between a bouncing drop and asuperhydrophobic substrate. Proceedings of the National Academy of Sciences,114(27):6930–6935, 2017.
[184] Zuozhu Yin, Mingshan Xue, Yidan Luo, Zhen Hong, Chan Xie, Zeming Ren,and Hao Wang. Excellent static and dynamic anti-icing properties of hierarchicalstructured zno superhydrophobic surface on cu substrates. Chemical PhysicsLetters, 755:137806, 2020.
修改评论