中文版 | English
题名

ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics

作者
发表日期
2024
DOI
发表期刊
ISSN
2160-9306
卷号PP期号:99
摘要
Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful tools for solving complex optimization problems characterized by multiple, often conflicting, objectives. While advancements have been made in computational efficiency as well as diversity and convergence of solutions, a critical challenge persists: the internal evolutionary mechanisms are opaque to human users. Drawing upon the successes of explainable AI in explaining complex algorithms and models, we argue that the need to understand the underlying evolutionary operators and population dynamics within MOEAs aligns well with a visual analytics paradigm. This paper introduces ParetoTracker, a visual analytics framework designed to support the comprehension and inspection of population dynamics in the evolutionary processes of MOEAs. Informed by preliminary literature review and expert interviews, the framework establishes a multi-level analysis scheme, which caters to user engagement and exploration ranging from examining overall trends in performance metrics to conducting fine-grained inspections of evolutionary operations. In contrast to conventional practices that require manual plotting of solutions for each generation, ParetoTracker facilitates the examination of temporal trends and dynamics across consecutive generations in an integrated visual interface. The effectiveness of the framework is demonstrated through case studies and expert interviews focused on widely adopted benchmark optimization problems
相关链接[IEEE记录]
学校署名
第一
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828599
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zherui Zhang,Fan Yang,Ran Cheng,et al. ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics[J]. IEEE Transactions on Visualization and Computer Graphics,2024,PP(99).
APA
Zherui Zhang,Fan Yang,Ran Cheng,&Yuxin Ma.(2024).ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics.IEEE Transactions on Visualization and Computer Graphics,PP(99).
MLA
Zherui Zhang,et al."ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics".IEEE Transactions on Visualization and Computer Graphics PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zherui Zhang]的文章
[Fan Yang]的文章
[Ran Cheng]的文章
百度学术
百度学术中相似的文章
[Zherui Zhang]的文章
[Fan Yang]的文章
[Ran Cheng]的文章
必应学术
必应学术中相似的文章
[Zherui Zhang]的文章
[Fan Yang]的文章
[Ran Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。