中文版 | English
题名

Accurate and Efficient Event-Based Semantic Segmentation Using Adaptive Spiking Encoder–Decoder Network

作者
发表日期
2024
DOI
发表期刊
ISSN
2162-2388
卷号PP期号:99
摘要
Spiking neural networks (SNNs), known for their low-power, event-driven computation, and intrinsic temporal dynamics, are emerging as promising solutions for processing dynamic, asynchronous signals from event-based sensors. Despite their potential, SNNs face challenges in training and architectural design, resulting in limited performance in challenging event-based dense prediction tasks compared with artificial neural networks (ANNs). In this work, we develop an efficient spiking encoder–decoder network (SpikingEDN) for large-scale event-based semantic segmentation (EbSS) tasks. To enhance the learning efficiency from dynamic event streams, we harness the adaptive threshold which improves network accuracy, sparsity, and robustness in streaming inference. Moreover, we develop a dual-path spiking spatially adaptive modulation (SSAM) module, which is specifically tailored to enhance the representation of sparse events and multimodal inputs, thereby considerably improving network performance. Our SpikingEDN attains a mean intersection over union (MIoU) of 72.57% on the DDD17 dataset and 58.32% on the larger DSEC-Semantic dataset, showing competitive results to the state-of-the-art ANNs while requiring substantially fewer computational resources. Our results shed light on the untapped potential of SNNs in event-based vision applications. The source codes are publicly available at https://github.com/EMI-Group/spikingedn.
相关链接[IEEE记录]
学校署名
第一
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828625
专题工学院_计算机科学与工程系
工学院_电子与电气工程系
作者单位
1.Department of Computer Science and Engineering, Shenzhen Key Laboratory of Computational Intelligence, Southern University of Science and Technology, Shenzhen, China
2.ACSLab, Huawei Technologies Company Ltd, Shenzhen, China
3.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Rui Zhang,Luziwei Leng,Kaiwei Che,等. Accurate and Efficient Event-Based Semantic Segmentation Using Adaptive Spiking Encoder–Decoder Network[J]. IEEE Transactions on Neural Networks and Learning Systems,2024,PP(99).
APA
Rui Zhang.,Luziwei Leng.,Kaiwei Che.,Hu Zhang.,Jie Cheng.,...&Ran Cheng.(2024).Accurate and Efficient Event-Based Semantic Segmentation Using Adaptive Spiking Encoder–Decoder Network.IEEE Transactions on Neural Networks and Learning Systems,PP(99).
MLA
Rui Zhang,et al."Accurate and Efficient Event-Based Semantic Segmentation Using Adaptive Spiking Encoder–Decoder Network".IEEE Transactions on Neural Networks and Learning Systems PP.99(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Rui Zhang]的文章
[Luziwei Leng]的文章
[Kaiwei Che]的文章
百度学术
百度学术中相似的文章
[Rui Zhang]的文章
[Luziwei Leng]的文章
[Kaiwei Che]的文章
必应学术
必应学术中相似的文章
[Rui Zhang]的文章
[Luziwei Leng]的文章
[Kaiwei Che]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。