中文版 | English
题名

Enhanced Interphase Ion Transport via Charge-Rich Space Charge Layers for Ultra-Stable Solid-State Lithium Metal Batteries

作者
通讯作者Sun, Jing; Huang, Baoling; Zhao, Tianshou
发表日期
2024-09-01
DOI
发表期刊
ISSN
1614-6832
EISSN
1614-6840
摘要
["The significant interfacial resistance between solid electrolyte-electrode interfaces is a major bottleneck for the practical application of solid-state lithium batteries. This resistance is primarily caused by the formation of space charge layers (SCLs), resulting from the redistribution of ionic carriers at the interface between dissimilar materials with varying chemical potentials, which lead to insufficient carriers and sluggish lithium-ion transport. In this study, a conjugated structure polymer is constructed through in situ polymerization onto the oxide electrolyte, forming charge-rich SCLs on the organic/inorganic interface, and enabling the interfacial layer to maintain superior ion transfer and contact. The Li solid NMR spectra and computational study suggest that optimized SCLs offer effective pathways for Li+ conduction in the electrolyte, thereby enhancing the interfacial conduction. Furthermore, the designed electrolyte induces the formation of an inorganic-rich interphase layer on the lithium anode, enabling rapid lithium-ion transport and uniform Li deposition. Consequently, the lithium symmetric cell with this electrolyte operates for more than 5100 h, while LiFePO4/Li solid-state batteries can stably cycle up to 800 times at 5 C. This interfacial modification strategy provides a new perspective for the rational design of the charge-rich SCLs and advances the understanding of the SCLs inside the electrolyte.","This study introduces a simple and scalable method for designing high-conductive composite polymer electrolytes by forming charge-rich space charge layers. The conjugated structure polymer (P-DOL) coated LLZTO (Li6.4La3Zr1.4Ta0.6O12) compositing with PVDF-HFP modulate Li+ transport pathways and strengthen the electrode/electrolyte interfacial compatibility. With these advantages, the composite electrolyte leads to a superior interfacial stability and lithium stripping/plating kinetics. image"]
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Research Grants Council of the Hong Kong Special Administrative Region[R6005-20] ; Research Grants Council of the Hong Kong Special Administrative Region, China[2023B0303000002] ; Guangdong Major Project of Basic and Applied Basic Research[FSNH22EG07]
WOS研究方向
Chemistry ; Energy & Fuels ; Materials Science ; Physics
WOS类目
Chemistry, Physical ; Energy & Fuels ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:001307397700001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828638
专题工学院_机械与能源工程系
作者单位
1.Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
2.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China
通讯作者单位机械与能源工程系
推荐引用方式
GB/T 7714
Li, Jin,Chen, Junjie,Xu, Xiaosa,et al. Enhanced Interphase Ion Transport via Charge-Rich Space Charge Layers for Ultra-Stable Solid-State Lithium Metal Batteries[J]. ADVANCED ENERGY MATERIALS,2024.
APA
Li, Jin.,Chen, Junjie.,Xu, Xiaosa.,Wang, Zhenyu.,Shen, Jiadong.,...&Zhao, Tianshou.(2024).Enhanced Interphase Ion Transport via Charge-Rich Space Charge Layers for Ultra-Stable Solid-State Lithium Metal Batteries.ADVANCED ENERGY MATERIALS.
MLA
Li, Jin,et al."Enhanced Interphase Ion Transport via Charge-Rich Space Charge Layers for Ultra-Stable Solid-State Lithium Metal Batteries".ADVANCED ENERGY MATERIALS (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Jin]的文章
[Chen, Junjie]的文章
[Xu, Xiaosa]的文章
百度学术
百度学术中相似的文章
[Li, Jin]的文章
[Chen, Junjie]的文章
[Xu, Xiaosa]的文章
必应学术
必应学术中相似的文章
[Li, Jin]的文章
[Chen, Junjie]的文章
[Xu, Xiaosa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。