题名 | LAMPS: A Layer-wised Mixed-Precision-and-Sparsity Accelerator for NAS-Optimized CNNs on FPGA |
作者 | |
DOI | |
发表日期 | 2024-05-08
|
ISSN | 2576-2613
|
ISBN | 979-8-3503-7244-1
|
会议录名称 | |
会议日期 | 5-8 May 2024
|
会议地点 | Orlando, FL, USA
|
摘要 | The increasing model size and computation load of convolutional neural networks (CNN) pose a grand challenge to deploy CNN models on edge computing devices. To further improve performance without significant accuracy loss, this paper developed a neural architecture search (NAS) method to achieve a layer-wise mixed-precision-and-sparsity (LAMPS) CNN. However, this optimization cannot be fully utilized and directly mapped to existing AI accelerators due to the irregu- lar computation of sparse and multi-precision data. To tackle this challenge, this work proposed a LAMPS vector systolic accelerator and demonstrated state-of-the-art results. Experi- mental results show that the LAMPS accelerator on Xilinx ZCU102 achieves an average performance of 756.83 GOPS and 470.25 GOPS when accelerating the NAS-optimized VGG16 and Resnet18, respectively, leading to 1.3-6.0x speed-up over the state- of-the-art accelerators on FPGA. |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/828695 |
专题 | 工学院_深港微电子学院 |
作者单位 | School of Microelectronics, Southern University of Science and Technology, Shenzhen, China |
第一作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Shuxin Yang,Chenchen Ding,Mingqiang Huang,et al. LAMPS: A Layer-wised Mixed-Precision-and-Sparsity Accelerator for NAS-Optimized CNNs on FPGA[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论