中文版 | English
题名

Open-Set Semi-Supervised Learning by Distribution Alignment

作者
DOI
发表日期
2024-07-05
ISSN
2161-4393
ISBN
979-8-3503-5932-9
会议录名称
会议日期
30 June-5 July 2024
会议地点
Yokohama, Japan
摘要
Semi-Supervised Learning (SSL) has been shown to be effective in the closed-set case where the label spaces in labeled and unlabeled data are the same. However, in open-set SSL, its performance is seriously degraded since unlabeled data contains some classes not seen in the labeled data, leading to the distribution mismatch between labeled and unlabeled data. To solve this problem, we propose a Distribution Aligned Openset SSL (DAOSSL) method, which aims to explicitly reduce the empirical distribution mismatch between the labeled and unlabeled data. Specifically, we first introduce a progressive separation mechanism that utilizes a coarse-to-fine pipeline to weigh the unlabeled data. Based on this weighting strategy, we then propose a weighted distribution alignment approach to minimize the distribution discrepancy between the labeled and unlabeled data. These two strategies can be easily integrated into existing deep SSL approaches for open-set SSL tasks. The effectiveness of the proposed DAOSSL method is demonstrated through empirical studies, which show that the method is able to successfully reduce the distribution mismatch between labeled and unlabeled data, resulting in performance improvement in open-set SSL tasks.
学校署名
其他
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828703
专题南方科技大学
作者单位
1.Eindhoven University of Technology
2.The Hong Kong University of Science and Technology (Guangzhou)
3.University of Twente
4.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Qiao Xiao,Jinjing Zhu,Boqian Wu,et al. Open-Set Semi-Supervised Learning by Distribution Alignment[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qiao Xiao]的文章
[Jinjing Zhu]的文章
[Boqian Wu]的文章
百度学术
百度学术中相似的文章
[Qiao Xiao]的文章
[Jinjing Zhu]的文章
[Boqian Wu]的文章
必应学术
必应学术中相似的文章
[Qiao Xiao]的文章
[Jinjing Zhu]的文章
[Boqian Wu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。