中文版 | English
题名

Improving Zero-Shot Coordination with Diversely Rewarded Partner Agents

作者
DOI
发表日期
2024-07-05
ISSN
2161-4393
ISBN
979-8-3503-5932-9
会议录名称
会议日期
30 June-5 July 2024
会议地点
Yokohama, Japan
摘要
Zero-shot coordination studies the training of well-generalizing human-AI coordination agents in the scenario where human data is unavailable. To obtain a coordination agent generalize to unseen humans, prevailing methods generate a population of partner agents as proxy models of human partners and then train a coordination agent with these partner agents. Constructed partner agents are expected to be as diverse as possible to cover a wide range of human behaviors, preventing a distribution shift between training and testing stages. Recent works concentrate on studying effective methods of creating a group of high-reward while diverse partner agents to model unseen human partners. However, the resulting high-reward partner agents do not accurately reflect real-world situations, considering that human decisions are not always optimal and may sometimes even hinder the progression of coordination. Therefore, these studies still struggle to capture the potential characteristics of human partners. In this work, reinforcement learning (RL) and supervised learning (SL) are integrated to train a reward-conditioned policy. By conditioned on different desired rewards, a reward-conditioned policy simulates both low-reward and high-reward partners. Additionally, a reward-bucketed replay buffer and curriculum learning are applied to enhance reward diversity and boost the training of coordination agents. Experiments demonstrate that the proposed reward-conditioned policy is capable of generating agents with different rewards. Moreover, the zero-shot coordination performance of agents trained with these partners surpasses previous methods in the majority of scenarios within the Overcooked human-AI coordination benchmark.
学校署名
第一
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828707
专题工学院_计算机科学与工程系
理学院_统计与数据科学系
工学院_斯发基斯可信自主研究院
作者单位
1.Department of Computer Science and Engineering, Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Southern University of Science and Technology, Shenzhen, China
2.Department of Statistics and Data Science, Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Peilin Wu,Zhenhua Yang,Peng Yang. Improving Zero-Shot Coordination with Diversely Rewarded Partner Agents[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Peilin Wu]的文章
[Zhenhua Yang]的文章
[Peng Yang]的文章
百度学术
百度学术中相似的文章
[Peilin Wu]的文章
[Zhenhua Yang]的文章
[Peng Yang]的文章
必应学术
必应学术中相似的文章
[Peilin Wu]的文章
[Zhenhua Yang]的文章
[Peng Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。