中文版 | English
题名

Collaborative Pareto Set Learning in Multiple Multi-Objective Optimization Problems

作者
DOI
发表日期
2024-07-05
ISSN
2161-4393
ISBN
979-8-3503-5932-9
会议录名称
会议日期
30 June-5 July 2024
会议地点
Yokohama, Japan
摘要
Pareto Set Learning (PSL) is an emerging research area in multi-objective optimization, focusing on training neural networks to learn the mapping from preference vectors to Pareto optimal solutions. However, existing PSL methods are limited to addressing a single Multi-objective Optimization Problem (MOP) at a time. When faced with multiple MOPs, this limitation results in significant inefficiencies and hinders the ability to exploit potential synergies across varying MOPs. In this paper, we propose a Collaborative Pareto Set Learning (CoPSL) framework, which learns the Pareto sets of multiple MOPs simultaneously in a collaborative manner. CoPSL particularly employs an architecture consisting of shared and MOP-specific layers. The shared layers are designed to capture commonalities among MOPs collaboratively, while the MOP-specific layers tailor these general insights to generate solution sets for individual MOPs. This collaborative approach enables CoPSL to efficiently learn the Pareto sets of multiple MOPs in a single execution while leveraging the potential relationships among various MOPs. To further understand these relationships, we experimentally demonstrate that shareable representations exist among MOPs. Leveraging these shared representations effectively improves the capability to approximate Pareto sets. Extensive experiments underscore the superior efficiency and robustness of CoPSL in approximating Pareto sets compared to state-of-the-art approaches on a variety of synthetic and real-world MOPs. Code is available at https://github.com/ckshang/CoPSL.
学校署名
其他
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828708
专题工学院_计算机科学与工程系
作者单位
1.School of Mathematics and Statistics, Guangdong University of Technology, China
2.Department of Computer Science and Engineering, Southern University of Science and Technology, China
推荐引用方式
GB/T 7714
Chikai Shang,Rongguang Ye,Jiaqi Jiang,et al. Collaborative Pareto Set Learning in Multiple Multi-Objective Optimization Problems[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chikai Shang]的文章
[Rongguang Ye]的文章
[Jiaqi Jiang]的文章
百度学术
百度学术中相似的文章
[Chikai Shang]的文章
[Rongguang Ye]的文章
[Jiaqi Jiang]的文章
必应学术
必应学术中相似的文章
[Chikai Shang]的文章
[Rongguang Ye]的文章
[Jiaqi Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。