中文版 | English
题名

A Zero-Shot Domain Adaptation Framework for Computed Tomography Via Reinforcement Learning and Volume Rendering

作者
DOI
发表日期
2024-05-30
ISSN
1945-7928
ISBN
979-8-3503-1334-5
会议录名称
会议日期
27-30 May 2024
会议地点
Athens, Greece
摘要
The Domain gap is an important issue when applying AI-based approaches to clinical use. Many recent approaches introduce domain adaptation (DA) to eliminate the influence of the domain gap. However, these approaches usually require modifications of network weights and losing the ability in the source (training) domain. To perform zero-shot domain adaptation without forgetting the source domain, in this work, we propose a novel reinforcement learning (RL) based framework which modifies the distribution of the input data instead of the weights of the pre-trained model. The RL agent observes the rendering results of the CT volume and uses a look-up table to perform non-linear mapping on the input to the standard distribution without tuning the original model weights. Since the pre-trained weights are fixed, the model can still generalize well on the source domain. Experiments show that the proposed approach dramatically improves the generalization of the proposed model (Dice score from 73.26% to 77.84%) without forgetting the source domain.
学校署名
其他
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828721
专题工学院_电子与电气工程系
作者单位
1.Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
2.Inspur General Software Co. Ltd., Inspur Group Co. Ltd
3.Department of Electronic and Electrical Engineering, Southern University of Science and Technology
推荐引用方式
GB/T 7714
Ang Li,Yongjian Zhao,Fan Bai,et al. A Zero-Shot Domain Adaptation Framework for Computed Tomography Via Reinforcement Learning and Volume Rendering[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ang Li]的文章
[Yongjian Zhao]的文章
[Fan Bai]的文章
百度学术
百度学术中相似的文章
[Ang Li]的文章
[Yongjian Zhao]的文章
[Fan Bai]的文章
必应学术
必应学术中相似的文章
[Ang Li]的文章
[Yongjian Zhao]的文章
[Fan Bai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。