中文版 | English
题名

Deep Learning Based Tremor Signal Recognition Method for a Vascular Interventional Surgery Robot

作者
DOI
发表日期
2024-08-07
ISSN
2152-7431
ISBN
979-8-3503-8808-4
会议录名称
会议日期
4-7 Aug. 2024
会议地点
Tianjin, China
摘要
Hand tremor seriously reduce the accuracy and safety of robot-assisted vascular interventional surgery. However, the existing methods have some deficiencies, such as phase delay and distortion of operation signal. Therefore, a more accurate and universal method for tremor signal recognition is needed. This paper proposes a recognition method based on residual neural networks. And we use a Geomagic TouchX to collect tremor signal. The sliding window algorithm is used to process the data and make the dataset. Finally, the validation results indicate that the method can recognize normal operation signal and tremor signal, and ensure that the normal operation signal of the surgeon is not affected.
学校署名
其他
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/828732
专题工学院_电子与电气工程系
作者单位
1.The Aerospace Center Hospital, School of Life Science and the Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, China
2.The Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen, China
3.The Department of Peripheral Vascular Intervention, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
推荐引用方式
GB/T 7714
Jintao Luo,Shuxiang Guo,Yonggan Yan,et al. Deep Learning Based Tremor Signal Recognition Method for a Vascular Interventional Surgery Robot[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jintao Luo]的文章
[Shuxiang Guo]的文章
[Yonggan Yan]的文章
百度学术
百度学术中相似的文章
[Jintao Luo]的文章
[Shuxiang Guo]的文章
[Yonggan Yan]的文章
必应学术
必应学术中相似的文章
[Jintao Luo]的文章
[Shuxiang Guo]的文章
[Yonggan Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。